Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37762443

ABSTRACT

Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties. Previously, we reported that MCs produced proinflammatory cytokines in response to a recombinant vesicular stomatitis virus (rVSVΔm51) and that IFNAR signaling was required to down-modulate these responses. Here, we have demonstrated that UV-irradiated rVSVΔm51 did not cause any inflammatory cytokines in either in vitro cultured mouse IFNAR-intact (IFNAR+/+), or in IFNAR-knockout (IFNAR-/-) MCs. However, the non-irradiated virus was able to replicate more effectively in IFNAR-/- MCs and produced a higher level of inflammatory cytokines compared with the IFNAR+/+ MCs. Interestingly, MCs lacking IFNAR expression displayed reduced levels of reactive oxygen species (ROS) compared with IFNAR+/+ MCs. Additionally, upon the viral infection, these IFNAR-/- MCs were found to coexist with many dying cells within the cell population. Based on our findings, IFNAR-intact MCs exhibit a lower rate of rVSVΔm51 infectivity and lower levels of cytokines while demonstrating higher levels of ROS. This suggests that MCs with intact IFNAR signaling may survive viral infections by producing cell-protective ROS mechanisms and are less likely to die than IFNAR-/- cells.


Subject(s)
Cytokines , Virus Diseases , Animals , Mice , Cell Death , Immunologic Factors , Mast Cells , Reactive Oxygen Species , Virus Diseases/genetics
2.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: mdl-34835125

ABSTRACT

A cytokine storm is an abnormal discharge of soluble mediators following an inappropriate inflammatory response that leads to immunopathological events. Cytokine storms can occur after severe infections as well as in non-infectious situations where inflammatory cytokine responses are initiated, then exaggerated, but fail to return to homeostasis. Neutrophils, macrophages, mast cells, and natural killer cells are among the innate leukocytes that contribute to the pathogenesis of cytokine storms. Neutrophils participate as mediators of inflammation and have roles in promoting homeostatic conditions following pathological inflammation. This review highlights the advances in understanding the mechanisms governing neutrophilic inflammation against viral and bacterial pathogens, in cancers, and in autoimmune diseases, and how neutrophils could influence the development of cytokine storm syndromes. Evidence for the destructive potential of neutrophils in their capacity to contribute to the onset of cytokine storm syndromes is presented across a multitude of clinical scenarios. Further, a variety of potential therapeutic strategies that target neutrophils are discussed in the context of suppressing multiple inflammatory conditions.


Subject(s)
Autoimmune Diseases/immunology , Cytokine Release Syndrome , Cytokines/immunology , Inflammation/immunology , Neoplasms/immunology , Animals , Humans , Immunity, Innate , Neutrophils/cytology , Neutrophils/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...