Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408249

ABSTRACT

Linear dependence of variables is a commonly used assumption in most diagnostic systems for which many robust methodologies have been developed over the years. In case the system nonlinearities are relevant, fault diagnosis methods, relying on the assumption of linearity, might potentially provide unsatisfactory results in terms of false alarms and missed detections. In recent years, many authors have proposed machine learning (ML) techniques to improve fault diagnosis performance to mitigate this problem. Although very powerful, these techniques require faulty data samples that are representative of any fault scenario. Additionally, ML techniques suffer from issues related to overfitting and unpredictable performance in regions which are not fully explored in the training phase. This paper proposes a non-linear additive model to characterize the non-linear redundancy relationships among the system signals. Using the multivariate adaptive regression splines (MARS) algorithm, these relationships are identified directly from the data. Next, the non-linear redundancy relationships are linearized to derive a local time-dependent fault signature matrix. The faulty sensor can then be isolated by measuring the angular distance between the column vectors of the fault signature matrix and the primary residual vector. A quantitative analysis of fault isolation and fault estimation performance is performed by exploiting real data from multiple flights of a semi-autonomous aircraft, thus allowing a detailed quantitative comparison with state-of-the-art machine-learning-based fault diagnosis algorithms.


Subject(s)
Machine Learning , Support Vector Machine , Aircraft , Algorithms
2.
Sensors (Basel) ; 21(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652944

ABSTRACT

Recent catastrophic events in aviation have shown that current fault diagnosis schemes may not be enough to ensure a reliable and prompt sensor fault diagnosis. This paper describes a comparative analysis of consolidated data-driven sensor Fault Isolation (FI) and Fault Estimation (FE) techniques using flight data. Linear regression models, identified from data, are derived to build primary and transformed residuals. These residuals are then implemented to develop fault isolation schemes for 14 sensors of a semi-autonomous aircraft. Specifically, directional Mahalanobis distance-based and fault reconstruction-based techniques are compared in terms of their FI and FE performance. Then, a bank of Bayesian filters is proposed to compute, in flight, the fault belief for each sensor. Both the training and the validation of the schemes are performed using data from multiple flights. Artificial faults are injected into the fault-free sensor measurements to reproduce the occurrence of failures. A detailed evaluation of the techniques in terms of FI and FE performance is presented for failures on the air-data sensors, with special emphasis on the True Air Speed (TAS), Angle of Attack (AoA), and Angle of Sideslip (AoS) sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...