Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 64(11): 2958-2967, 2023 11.
Article in English | MEDLINE | ID: mdl-37660326

ABSTRACT

OBJECTIVE: In the present study, we describe a novel class of small-molecule synthetic compounds that ameliorate seizure-like behavior, using an electroshock assay to examine seizure duration in Caenorhabditis elegans. We also examine the hypothesis that these compounds, which we have called resveramorphs (RVMs), act by an irreversible binding mechanism. METHODS: Our electroshock assay examines seizure duration in C. elegans and can be used as a drug-screening platform for the identification of novel anti-seizure agents. The use of C. elegans allows for a rapid and efficient method of drug screening that may take years in other higher-order model organisms. A novel wash method, paired with our electroshock assay, allows us to discern differences in biological activity when the C. elegans are incubated in different drug solutions, to establish whether these compounds can be "washed" off. RESULTS: One of the RVMs (RVM-3), reported here for the first time, was found to be potent at picomolar concentrations. Insights also provided information on the potential mechanisms of action of this compound. Covalent binding is thought to provide a strong irreversible bond because of a change in structure between two of the novel RVMs described in this work. This was also discerned through the novel wash method paired with our electroshock assay. SIGNIFICANCE: RVM-3 was evaluated using our assay and found to possess anti-seizure activity at picomolar concentrations. These insights also provide information on the potential mechanisms of action of these compounds, which may include covalent binding. This was also discerned through a novel wash method paired with our electroshock assay.


Subject(s)
Anticonvulsants , Caenorhabditis elegans , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Electroshock , Disease Models, Animal , Seizures/drug therapy
2.
Sci Rep ; 12(1): 13655, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999230

ABSTRACT

As 3 billion pounds of herbicides are sprayed over farmlands every year, it is essential to advance our understanding how pesticides may influence neurological health and physiology of both humans and other animals. Studies are often one-dimensional as the majority examine glyphosate by itself. Farmers and the public use commercial products, like Roundup, containing a myriad of chemicals in addition to glyphosate. Currently, there are no neurological targets proposed for glyphosate and little comparison to Roundup. To investigate this, we compared how glyphosate and Roundup affect convulsant behavior in C. elegans and found that glyphosate and Roundup increased seizure-like behavior. Key to our initial hypothesis, we found that treatment with an antiepileptic drug rescued the prolonged convulsions. We also discovered over a third of nematodes exposed to Roundup did not recover from their convulsions, but drug treatment resulted in full recovery. Notably, these effects were found at concentrations that are 1,000-fold dilutions of previous findings of neurotoxicity, using over 300-fold less herbicide than the lowest concentration recommended for consumer use. Exploring mechanisms behind our observations, we found significant evidence that glyphosate targets GABA-A receptors. Pharmacological experiments which paired subeffective dosages of glyphosate and a GABA-A antagonist yielded a 24% increase in non-recovery compared to the antagonist alone. GABA mutant strain experiments showed no effect in a GABA-A depleted strain, but a significant, increased effect in a glutamic acid decarboxylase depleted strain. Our findings characterize glyphosate's exacerbation of convulsions and propose the GABA-A receptor as a neurological target for the observed physiological changes. It also highlights glyphosate's potential to dysregulate inhibitory neurological circuits.


Subject(s)
Caenorhabditis elegans , Herbicides , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Humans , Seizures/chemically induced , gamma-Aminobutyric Acid , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...