Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 36(6): 962-972, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30280980

ABSTRACT

A hallmark of the progressive cascade of damage referred to as secondary spinal cord injury (SCI) is vascular disruption resulting in decreased oxygen delivery and loss of mitochondria homeostasis. While therapeutics targeting restoration of single facets of mitochondrial function have proven largely ineffective clinically post-SCI, comprehensively addressing mitochondrial function via pharmacological stimulation of mitochondrial biogenesis (MB) is an underexplored strategy. This study examined the effects of formoterol, a mitochondrial biogenic Food and Drug Administration-approved selective and potent ß2-adrenoreceptor (ADRB2) agonist, on recovery from SCI in mice. Female C57BL/6 mice underwent moderate SCI using a force-controlled impactor-induced contusion model, followed by daily formoterol intraperitoneal administration (0.1 mg/kg) beginning 1 h post-SCI. The SCI resulted in decreased mitochondrial protein expression, including PGC-1α, in the injury and peri-injury sites as early as 3 days post-injury. Formoterol treatment attenuated this decrease in PGC-1α, indicating enhanced MB, and restored downstream mitochondrial protein expression to that of controls by 15 days. Formoterol-treated mice also exhibited less histological damage than vehicle-treated mice 3 days after injury-namely, decreased lesion volume and increased white and gray matter sparing in regions rostral and caudal to the injury epicenter. Importantly, locomotor capability of formoterol-treated mice was greater than vehicle-treated mice by 7 days, reaching a Basso Mouse Scale score two points greater than that of vehicle-treated SCI mice by 15 days. Interestingly, similar locomotor restoration was observed when initiation of treatment was delayed until 8 h post-injury. These data provide evidence of ADRB2-mediated MB as a therapeutic approach for the management of SCI.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Formoterol Fumarate/pharmacology , Mitochondria/drug effects , Organelle Biogenesis , Spinal Cord Injuries/physiopathology , Animals , Female , Mice , Mice, Inbred C57BL , Recovery of Function/drug effects
2.
Trends Mol Med ; 24(6): 522-524, 2018 06.
Article in English | MEDLINE | ID: mdl-29729835

ABSTRACT

A recent study indicates that reducing fibrotic scarring by genetically abrogating the proliferation of type A pericytes promotes axon regeneration and functional recovery after spinal cord injury. Questions remain regarding the identity of the cells being manipulated and the balance between the beneficial and detrimental effects of fibrotic scarring.


Subject(s)
Cicatrix , Pericytes , Humans , Nerve Regeneration , Recovery of Function , Spinal Cord Injuries
3.
Cell Rep ; 22(13): 3587-3597, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590625

ABSTRACT

Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair.


Subject(s)
Astrocytes/enzymology , Astrocytes/pathology , MAP Kinase Kinase Kinases/metabolism , Spinal Cord Injuries/enzymology , Spinal Cord Injuries/pathology , Animals , Central Nervous System/enzymology , Central Nervous System/pathology , Female , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , SOX9 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Up-Regulation
4.
J Neuroinflammation ; 14(1): 120, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28629465

ABSTRACT

BACKGROUND: Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues. METHODS: Identification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1-/- or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively. RESULTS: Administration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1-/- mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1-/- mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord. CONCLUSIONS: This study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that activate complement and drive pathology. We demonstrate that these neoepitopes represent novel targets for the therapeutic delivery of a complement inhibitor, and possibly other payload, to the injured spinal cord.


Subject(s)
Autoantibodies/metabolism , Complement Activation/physiology , Epitopes/metabolism , Immunoglobulin M/metabolism , Spinal Cord Injuries/metabolism , Animals , Autoantibodies/immunology , Epitopes/immunology , Female , Immunoglobulin M/immunology , Locomotion/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/physiology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/pathology
5.
Methods Mol Biol ; 1462: 357-72, 2016.
Article in English | MEDLINE | ID: mdl-27604728

ABSTRACT

Ischemic stroke is the fourth leading cause of death in the USA and a prominent cause of death globally. Besides thrombolytic therapy used in a small subset of patients, no alternative therapeutic strategy has been shown to improve the outcome of stroke patients. Preclinical models of ischemic stroke are an essential tool for investigating pathogenic processes that happen after the ischemic insult, as well as to screen for candidate therapeutic interventions. There are several models of rodent ischemic stroke including mechanical occlusion, thromboembolic stroke, and photothrombotic stroke. However, models that permit studying stroke in the context of thrombolytic therapy, such as thromboembolic models, are becoming of increasing interest to the research community. In this chapter, we describe a thromboembolic model of ischemic stroke with and without tissue-plasminogen activator-induced reperfusion. We describe protocols for microemboli preparation, surgical procedure, and post-stroke assessment of animals.


Subject(s)
Brain Ischemia/etiology , Disease Models, Animal , Reperfusion Injury/etiology , Thromboembolism/complications , Thromboembolism/pathology , Animals , Brain Infarction/diagnostic imaging , Brain Infarction/etiology , Brain Infarction/pathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Humans , Mice , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/pathology , Stroke/diagnostic imaging , Stroke/etiology , Stroke/pathology , Thromboembolism/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...