Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Prog Transplant ; 31(4): 288-297, 2021 12.
Article in English | MEDLINE | ID: mdl-34839728

ABSTRACT

Introduction: Proteinuria is recognized as an independent risk factor for cardiovascular disease in kidney transplant recipients, but previous studies have not considered the impact of changes in urine protein over time. Research Question and Design: We used time-dependent, multivariable Cox proportional hazards models in this observational cohort study of adult kidney transplant recipients to evaluate whether proteinuria measured by dipstick on random spot urine samples starting from 1-month post-transplant was associated with the risk of major adverse cardiac events and graft loss. Results: A total of 144 major adverse cardiac events, defined as acute myocardial infarction, cerebrovascular accident, revascularization, or all-cause mortality, were observed in 1106 patients over 5728.7 person-years. Any level of proteinuria greater or equal to trace resulted in a two-fold increase in the risk of major adverse cardiac events (hazard ratio 2.00 [95% confidence interval 1.41, 2.84]). This relationship was not found to be dose-dependent (hazard ratios of 2.98, 1.76, 1.63, and 1.54 for trace, 1+, 2+, and 3+ urine protein, respectively). There was an increased risk of graft failure with greater urine protein concentration (hazard ratios 2.22, 2.85, 6.41, and 19.71 for trace, 1+, 2+, and 3+, respectively). Conclusion: Urine protein is associated with major adverse cardiac events and graft loss in kidney transplant recipients. The role of interventions to reduce proteinuria on decreasing the risk of adverse cardiovascular and graft outcomes in kidney transplant recipients requires further study.


Subject(s)
Cardiovascular Diseases , Kidney Transplantation , Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Graft Rejection/epidemiology , Graft Survival , Humans , Proportional Hazards Models , Proteinuria/epidemiology , Risk Factors , Transplant Recipients
3.
Lancet ; 398(10313): 1837-1850, 2021 11 13.
Article in English | MEDLINE | ID: mdl-34774146

ABSTRACT

Type 1 diabetes is on the rise globally; however, the burden of mortality remains disproportionate in low-income and middle-income countries (LMICs). As 2021 marks 100 years since the discovery of insulin, we revisit progress, global burden of type 1 diabetes trends, and understanding of the pathogenesis and management practices related to the disease. Despite much progress, inequities in access and availability of insulin formulations persist and are reflected in differences in survival and morbidity patterns related to the disease. Some of these inequities have also been exacerbated by health-system challenges during the COVID-19 pandemic. There is a clear opportunity to improve access to insulin and related essential technologies for improved management of type 1 diabetes in LMICs, especially as a part of universal health coverage. These improvements will require concerted action and investments in human resources, community engagement, and education for the timely diagnosis and management of type 1 diabetes, as well as adequate health-care financing. Further research in LMICs, especially those in Africa, is needed to improve our understanding of the burden, risk factors, and implementation strategies for managing type 1 diabetes.


Subject(s)
Developing Countries , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Global Burden of Disease/trends , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Adolescent , Child , Child, Preschool , Disease Management , History, 20th Century , History, 21st Century , Humans , Hypoglycemic Agents/economics , Hypoglycemic Agents/history , Insulin/economics , Insulin/history , Life Expectancy , Universal Health Insurance
4.
Front Pharmacol ; 9: 737, 2018.
Article in English | MEDLINE | ID: mdl-30050438

ABSTRACT

Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is a widely used anticonvulsant drug that is currently undergoing clinical evaluation for anticancer therapy due to its anti-angiogenic potential. Endothelial cells (ECs) can transition into mesenchymal cells and this form of EC plasticity is called endothelial-to-mesenchymal transition (EndMT), which is widely implicated in several pathologies including cancer and organ fibrosis. However, the effect of VPA on EC plasticity and EndMT remains completely unknown. We report herein that VPA-treatment significantly inhibits tube formation, migration, nitric oxide production, proliferation and migration in ECs. A microscopic evaluation revealed, and qPCR, immunofluorescence and immunoblotting data confirmed EndMT-like phenotypic switching as well as an increased expression of pro-fibrotic genes in VPA-treated ECs. Furthermore, our data confirmed important and regulatory role played by TGFß-signaling in VPA-induced EndMT. Our qPCR array data performed for 84 endothelial genes further supported our findings and demonstrated 28 significantly and differentially regulated genes mainly implicated in angiogenesis, endothelial function, EndMT and fibrosis. We, for the first time report that VPA-treatment associated EndMT contributes to the VPA-associated loss of endothelial function. Our data also suggest that VPA based therapeutics may exacerbate endothelial dysfunction and EndMT-related phenotype in patients undergoing anticonvulsant or anticancer therapy, warranting further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...