Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(7): 4990-4999, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38494854

ABSTRACT

Previously, we described the synthesis of stable, bicyclic examples of the rather rare diazacyclobutene (DCB) motif by means of a cycloaddition between triazolinediones and electron-rich thiolated alkynes. Here, we report the investigation of the cycloaddition of triazolinediones with related electron-rich yne-carbamates and carbazole-alkynes. Bicyclic DCBs arising from yne-carbamates were isolated in 8-65% yield, while those arising from carbazole-alkynes were isolated in 28-59% yield. Mechanistic studies and characterization of isolable byproducts shed light on the underlying issues leading to poor to moderate yields.

2.
J Org Chem ; 87(11): 7494-7500, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35549283

ABSTRACT

Our previous method to access the diazacyclobutene scaffold did not allow for modification of the substituent originating from the 1,2,4-triazoline-3,5-dione component. We have circumvented this challenge and expanded access to additional structural diversity of the scaffold. A telescoped urazole oxidation and Lewis acid-catalyzed cyclization provided R3-substituted diazacyclobutenes. Calcium hypochlorite-mediated oxidation of urazoles followed by MgCl2-catalyzed cyclization of the resulting triazolinediones with thioalkynes promoted the formation of diazacyclobutenes bearing substitution at the R3 position originating from the triazolinedione component.


Subject(s)
Triazoles , Cyclization , Cycloaddition Reaction , Molecular Structure , Triazoles/chemistry
3.
Polymers (Basel) ; 13(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577961

ABSTRACT

We have previously demonstrated that cellulose nanocrystals modified with poly(ethylenimine) (PEI-f-CNC) are capable of capturing volatile organic compounds (VOCs) associated with malodors. In this manuscript, we describe our efforts to develop a scalable synthesis of these materials from bulk cotton. This work culminated in a reliable protocol for the synthesis of unmodified cellulose nanocrystals (CNCs) from bulk cotton on a 0.5 kg scale. Additionally, we developed a protocol for the modification of the CNCs by means of sequential 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) coupling to modify their surface with poly(ethylenimine) on a 100 g scale. Subsequently, we evaluated the performance of the PEI-f-CNC materials that were prepared in a series of VOC capture experiments. First, we demonstrated their efficacy in capturing volatile fatty acids emitted at a rendering plant when formulated as packed-bed filter cartridges. Secondly, we evaluated the potential to use aqueous PEI-f-CNC suspensions as a spray-based delivery method for VOC remediation. In both cases, the PEI-f-CNC formulations reduced detectable malodor VOCs by greater than 90%. The facile scaled synthesis of these materials and their excellent performance at VOC remediation suggest that they may emerge as a useful strategy for the remediation of VOCs associated with odor.

4.
J Org Chem ; 84(15): 9734-9743, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31295401

ABSTRACT

The α-oxidized thioimidates are useful bidentate ligands and are important motifs in pharmaceuticals, pesticides, and fungicides. Despite their broad utility, a direct route for their synthesis has been elusive. Herein, we describe a one-step synthesis of N,N-dicarbamoyl 2-iminothioimidates from easily accessible thioacetylenes and commercially available azodicarboxylates (20 examples, ≤99% yield). Additionally, the mechanism of the transformation was extensively explored by variable-temperature NMR, in situ IR, and quantum mechanical simulations. These experiments suggest that the reaction commences with a highly asynchronous [2 + 2] cycloaddition, which leads to a four-membered diazacyclobutene intermediate with a barrier consistent with the observed reaction rate. This intermediate was then isolated for subsequent kinetic measurements, which yielded an experimental barrier within 1 kcal/mol of the calculated barrier for a subsequent 4π electrocyclic ring opening leading to the observed iminothioimidate products. This method represents the first direct route to α-oxidized thioimidates from readily accessible starting materials.


Subject(s)
Alkynes/chemistry , Azo Compounds/chemistry , Dicarboxylic Acids/chemistry , Imines/chemical synthesis , Sulfhydryl Compounds/chemical synthesis , Sulfides/chemistry , Cycloaddition Reaction , Imines/chemistry , Molecular Structure , Stereoisomerism , Sulfhydryl Compounds/chemistry
5.
Org Lett ; 20(24): 8009-8013, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30525696

ABSTRACT

A formal [2 + 2] cycloaddition of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with electron-rich alkynyl sulfides and selenides is described. These investigations provide a convenient method to access diazacyclobutenes in good yield while tolerating a relatively broad substrate scope of thio-acetylenes. This method provides ready access to a unique and hitherto rarely accessible class of heterocycles. A combination of dynamic NMR, X-ray crystallography, and computation sheds light on the potential aromaticity of the scaffold.

SELECTION OF CITATIONS
SEARCH DETAIL
...