Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz. j. infect. dis ; 19(4): 376-383, July-Aug. 2015. tab, ilus
Article in English | LILACS | ID: lil-759281

ABSTRACT

Paracoccidioidomycosis is a systemic and endemic mycosis, restricted to tropical and subtropical areas of Latin America. The infection is caused by the thermal dimorphic fungus Paracoccidioides brasiliensisand Paracoccidioides lutzii. The diagnosis of paracoccidioidomycosis is usually performed by microscopic examination, culture and immunodiagnostic tests to respiratory specimens, body fluids and/or biopsies; however these methods require laboratory personnel with experience and several days to produce a result. In the present study, we have validated and evaluated a nested PCR assay targeting the gene encoding the Paracoccidioides gp43membrane protein in 191 clinical samples: 115 samples from patients with proven infections other than paracoccidioidomycosis, 51 samples as negative controls, and 25 samples from patients diagnosed with paracoccidioidomycosis. Additionally, the specificity of the nested PCR assay was also evaluated using purified DNA isolated from cultures of different microorganisms (n= 35) previously identified by culture and/or sequencing. The results showed that in our hands, this nested PCR assay for gp43 protein showed specificity and sensitivity rates of 100%. The optimized nested PCR conditions in our laboratory allowed detection down to 1 fg of P. brasiliensisDNA.


Subject(s)
Humans , DNA, Fungal/genetics , Fungal Proteins/genetics , Paracoccidioides/genetics , Paracoccidioidomycosis/diagnosis , Colombia , Paracoccidioides/isolation & purification , Polymerase Chain Reaction , Sensitivity and Specificity
2.
Braz J Infect Dis ; 19(4): 376-83, 2015.
Article in English | MEDLINE | ID: mdl-26100437

ABSTRACT

Paracoccidioidomycosis is a systemic and endemic mycosis, restricted to tropical and subtropical areas of Latin America. The infection is caused by the thermal dimorphic fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The diagnosis of paracoccidioidomycosis is usually performed by microscopic examination, culture and immunodiagnostic tests to respiratory specimens, body fluids and/or biopsies; however these methods require laboratory personnel with experience and several days to produce a result. In the present study, we have validated and evaluated a nested PCR assay targeting the gene encoding the Paracoccidioides gp43 membrane protein in 191 clinical samples: 115 samples from patients with proven infections other than paracoccidioidomycosis, 51 samples as negative controls, and 25 samples from patients diagnosed with paracoccidioidomycosis. Additionally, the specificity of the nested PCR assay was also evaluated using purified DNA isolated from cultures of different microorganisms (n=35) previously identified by culture and/or sequencing. The results showed that in our hands, this nested PCR assay for gp43 protein showed specificity and sensitivity rates of 100%. The optimized nested PCR conditions in our laboratory allowed detection down to 1fg of P. brasiliensis DNA.


Subject(s)
DNA, Fungal/genetics , Fungal Proteins/genetics , Paracoccidioides/genetics , Paracoccidioidomycosis/diagnosis , Colombia , Humans , Paracoccidioides/isolation & purification , Polymerase Chain Reaction , Sensitivity and Specificity
3.
Article in English | MEDLINE | ID: mdl-26034509

ABSTRACT

BACKGROUND: Pentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties. The simultaneous use of PTX and antifungal therapy (itraconazole) has previously been evaluated in an experimental model of pulmonary paracoccidioidomycosis (PCM), a systemic fungal disease caused by the fungus Paracoccidioides brasiliensis (Pb) and characterized by chronic inflammation and lung fibrosis that appears even after a successful course of antifungal therapy. The results revealed prompt and statistically significant reductions in inflammation and fibrosis when compared to itraconazole alone. However, the effect of monotherapy with PTX on the host response to PCM has not been well-documented. Our aim was to determine the effect of PTX on the course of pulmonary lesions and on the local immune response. RESULTS: At the middle and end of treatment, the Pb-infected-PTX-treated mice exhibited significant reductions in lung density compared to the Pb-infected-non-treated mice as assessed by the quantification of Hounsfield units on high-resolution computed tomography (HRCT) (p <0.05 by Kruskal-Wallis test); additionally, at the end of therapy, the lung areas involved in the inflammatory reactions were only 3 vs. 22 %, respectively, by histomorphometry (p <0.05 by Mann-Whitney test), and this reduction was associated with a lower fungal burden and limited collagen increment in the pulmonary lesions. PTX treatment restored the levels of IFN-γ, MIP-1ß, and IL-3 that had been down-regulated by Pb infection. Additionally, IL-12p70, IL-10, IL-13, and eotaxin were significantly increased, whereas Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES) levels were decreased in the lungs of the Pb-infected-PTX-treated mice compared to the non-treated group. CONCLUSIONS/SIGNIFICANCE: This study showed that PTX therapy administered at an "early" stage of granulomatous inflammation controlled the progress of the PCM by diminishing the pulmonary inflammation and the fungal burden and avoiding the appearance of collagen deposits in the pulmonary lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...