Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(1): e1010819, 2023 01.
Article in English | MEDLINE | ID: mdl-36689555

ABSTRACT

Many research questions in sensory neuroscience involve determining whether the neural representation of a stimulus property is invariant or specific to a particular stimulus context (e.g., Is object representation invariant to translation? Is the representation of a face feature specific to the context of other face features?). Between these two extremes, representations may also be context-tolerant or context-sensitive. Most neuroimaging studies have used operational tests in which a target property is inferred from a significant test against the null hypothesis of the opposite property. For example, the popular cross-classification test concludes that representations are invariant or tolerant when the null hypothesis of specificity is rejected. A recently developed neurocomputational theory suggests two insights regarding such tests. First, tests against the null of context-specificity, and for the alternative of context-invariance, are prone to false positives due to the way in which the underlying neural representations are transformed into indirect measurements in neuroimaging studies. Second, jointly performing tests against the nulls of invariance and specificity allows one to reach more precise and valid conclusions about the underlying representations, particularly when the null of invariance is tested using the fine-grained information from classifier decision variables rather than only accuracies (i.e., using the decoding separability test). Here, we provide empirical and computational evidence supporting both of these theoretical insights. In our empirical study, we use encoding of orientation and spatial position in primary visual cortex as a case study, as previous research has established that these properties are encoded in a context-sensitive way. Using fMRI decoding, we show that the cross-classification test produces false-positive conclusions of invariance, but that more valid conclusions can be reached by jointly performing tests against the null of invariance. The results of two simulations further support both of these conclusions. We conclude that more valid inferences about invariance or specificity of neural representations can be reached by jointly testing against both hypotheses, and using neurocomputational theory to guide the interpretation of results.


Subject(s)
Neuroimaging , Neurosciences , Magnetic Resonance Imaging/methods , Pattern Recognition, Visual
2.
Learn Mem ; 29(7): 160-170, 2022 07.
Article in English | MEDLINE | ID: mdl-35710303

ABSTRACT

Theories of learning distinguish between elemental and configural stimulus processing depending on whether stimuli are processed independently or as whole configurations. Evidence for elemental processing comes from findings of summation in animals where a compound of two dissimilar stimuli is deemed to be more predictive than each stimulus alone, whereas configural processing is supported by experiments using similar stimuli in which summation is not found. However, in humans the summation effect is robust and impervious to similarity manipulations. In three experiments in human predictive learning, we show that summation can be obliterated when partially reinforced cues are added to the summands in training and tests. This lack of summation only holds when the partially reinforced cues are similar to the reinforced cues (experiment 1) and seems to depend on participants sampling only the most salient cue in each trial (experiments 2a and 2b) in a sequential visual search process. Instead of attributing our and others' instances of lack of summation to the customary idea of configural processing, we offer a formal subsampling rule that might be applied to situations in which the stimuli are hard to parse from each other.


Subject(s)
Association Learning , Cues , Animals , Conditioning, Classical , Humans
3.
Behav Processes ; 154: 27-35, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29162375

ABSTRACT

The correlation between blocking and within-compound memory is stronger when compound training occurs before elemental training (i.e., backward blocking) than when the phases are reversed (i.e., forward blocking; Melchers et al., 2004, 2006). This trial order effect is often interpreted as problematic for performance-focused models that assume a critical role for within-compound associations in both retrospective revaluation and traditional cue competition. The present manuscript revisits this issue using a computational modeling approach. The fit of sometimes competing retrieval (SOCR; Stout & Miller, 2007) was compared to the fit of an acquisition-focused model of retrospective revaluation and cue competition. These simulations reveal that SOCR explains this trial order effect in some situations based on its use of local error reduction.


Subject(s)
Association Learning , Memory , Mental Recall , Models, Psychological , Computer Simulation , Cues , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...