Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 51(3): 1004-10, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17220413

ABSTRACT

Previous genetic analysis of Haemophilus influenzae revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415: AcrAB-TolC-mediated efflux and Fmt bypass, resulting from mutations in the pump repressor gene acrR and in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC, 64 microg/ml versus 4 microg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, two-dimensional gel electrophoresis, and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real-time reverse transcription-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression; however, pulsed-field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing, and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating the overall reduced susceptibility resulting from target overexpression.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Chromosomes, Bacterial/genetics , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/drug effects , Peptides/pharmacology , Amidohydrolases/biosynthesis , Amidohydrolases/genetics , Blotting, Southern , Culture Media , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli Proteins/genetics , Gene Dosage , Gene Expression Regulation, Enzymologic/drug effects , Hydrolysis , Microbial Sensitivity Tests , Mutation/physiology , Oligonucleotide Array Sequence Analysis , Repressor Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/chemistry
2.
Antimicrob Agents Chemother ; 49(8): 3129-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048914

ABSTRACT

Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 microg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 microg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 microg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Haemophilus influenzae/drug effects , Membrane Transport Proteins/metabolism , Peptides/pharmacology , Amidohydrolases/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Drug Resistance, Bacterial/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Haemophilus influenzae/genetics , Haemophilus influenzae/metabolism , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...