Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mov Disord ; 35(11): 2095-2100, 2020 11.
Article in English | MEDLINE | ID: mdl-32652692

ABSTRACT

BACKGROUND: Leucine-rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine-rich repeat kinase 2 function and target engagement. OBJECTIVES: Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine-rich repeat kinase 2 in PD cohorts. METHODS: Here, we describe enzyme-linked immunosorbent assay-based assays capable of detecting multiple aspects of leucine-rich repeat kinase 2 function at endogenous levels in human tissues. RESULTS: In peripheral blood mononuclear cells from both healthy and affected carriers of the G2019S mutation in leucine-rich repeat kinase 2, we report, for the first time, significantly elevated in vitro kinase activity, while detecting a significant increase in pS935/leucine-rich repeat kinase 2 in idiopathic PD patients. CONCLUSIONS: Quantitative assays such as these described here could potentially uncover specific markers of leucine-rich repeat kinase 2 function that are predictive of disease progression, aid in patient stratification, and be a critical component of upcoming clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Leukocytes, Mononuclear , Parkinson Disease , Enzyme-Linked Immunosorbent Assay , Humans , Leucine/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics
2.
Neurol Genet ; 6(1): 385, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32042909

ABSTRACT

OBJECTIVE: We aimed to study the role of coding VPS13C variants in a large cohort of patients with late-onset Parkinson disease (PD) (LOPD). METHODS: VPS13C and its untranslated regions were sequenced using targeted next-generation sequencing in 1,567 patients with PD and 1,667 controls from 3 cohorts. Association tests of rare potential homozygous and compound heterozygous variants and burden tests for rare heterozygous variants were performed. Common variants were analyzed using logistic regression adjusted for age and sex in each of the cohorts, followed by a meta-analysis. RESULTS: No biallelic carriers of rare VPS13C variants were found among patients, and 2 carriers of compound heterozygous variants were found in 2 controls. There was no statistically significant burden of rare (minor allele frequency [MAF] <1%) or very rare (MAF <0.1%) coding VPS13C variants in PD. A VPS13C haplotype including the p.R153H-p.I398I-p.I1132V-p.Q2376Q variants was nominally associated with a reduced risk for PD (meta-analysis of the tagging SNP p.I1132V [odds ratio = 0.48, 95% confidence interval = 0.28-0.82, p = 0.0052]). This haplotype was not in linkage disequilibrium with the known genome-wide association study top hit. CONCLUSIONS: Our results do not support a role for rare heterozygous or biallelic VPS13C variants in LOPD. Additional genetic replication and functional studies are needed to examine the role of the haplotype identified here associated with reduced risk for PD.

3.
J Parkinsons Dis ; 10(2): 623-629, 2020.
Article in English | MEDLINE | ID: mdl-32007961

ABSTRACT

The phosphorylated form of LRRK2, pS935 LRRK2, has been proposed as a target modulation biomarker for LRRK2 inhibitors. The primary aim of the study was to characterize and qualify this biomarker for therapeutic trials of LRRK2 inhibitors in Parkinson's disease (PD). To this end, analytically validated assays were used to monitor levels of pS935 LRRK2 and total LRRK2 in peripheral blood mononuclear cells (PBMCs) from the following donor groups: healthy controls, idiopathic PD, and G2019S carriers with and without PD. Neither analyte correlated with age, gender, or disease severity. While total LRRK2 levels were similar across the four groups, there was a significant reduction in pS935 LRRK2 levels in disease-manifesting G2019S carriers compared to idiopathic PD. In aggregate, these data indicate that phosphorylation of LRRK2 at S935 may reflect a state marker for G2019S LRRK2-driven PD, the underlying biology for which requires investigation in future studies. This study also provides critical foundational data to inform the integration of pS935 and total LRRK2 levels as biomarkers in therapeutic trials of LRRK2 kinase inhibitors.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leukocytes, Mononuclear/metabolism , Parkinson Disease/blood , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Middle Aged , Phosphorylation/physiology
4.
Mov Disord ; 35(1): 134-141, 2020 01.
Article in English | MEDLINE | ID: mdl-31505072

ABSTRACT

BACKGROUND: LRRK2 mutations are a common cause of dominantly inherited PD. Previous studies showed decreases in urine levels of didocohexaenoyl (22:6) bis(monoacylglycerol)phosphate in LRRK2-knockout mice and in non-human primates treated with LRRK2 kinase inhibitors. We hypothesized that urine levels of bis(monoacylglycerol)phosphate isoforms will be higher in individuals with a PD-causing gain-of-kinase function mutation, LRRK2 G2019S. The objective of this study was to investigate alterations in urinary phospholipids as biomarkers of LRRK2 mutations and Parkinson's disease status/phenotypes. METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to assess 54 bioactive phospholipids in urine from the LRRK2 Cohort Consortium (n = 80). To confirm and extend the findings, urine from an independent LRRK2 cohort from Columbia University Irving Medical Center (n = 116) was used. Both cohorts were composed of LRRK2 G2019S carriers and non-carriers with and without PD. RESULTS: In each cohort, 4 bis(monoacylglycerol)phosphate isoforms (di-18:1-bis[monoacylglycerol]phosphate, didocohexaenoyl [22:6] bis[monoacylglycerol] phosphate, 2,2'-di-22:6-bis[monoacylglycerol]phosphate, and 2,2'-di-18:1-bis[monoacylglycerol]phosphate) were significantly higher (2.5- to 4.3-fold) in G2019S carriers compared with non-carriers. Interestingly, 2,2'-di-18:1-bis(monoacylglycerol)phosphate levels were marginally higher in LRRK2 carriers with PD than in those without PD (P = 0.045). Moreover, increased 2,2' and total di-22:6-bis(monoacylglycerol)phosphate were associated with worse cognitive status assessed by the Montreal Cognitive Assessment (P = 0.0033 and 0.0144, respectively). CONCLUSIONS: The observed association of bis(monoacylglycerol)phosphate isoforms with LRRK2 G2019S mutation, PD status among G2019S carriers, and correlation with cognitive decline suggest the potential use of urinary bis(monoacylglycerol)phosphate isoforms as biomarkers for clinical trials of LRRK2-targeted therapies. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Parkinson Disease/genetics , Parkinsonian Disorders/genetics , Aged , Biomarkers , Female , Heterozygote , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Phenotype
5.
Am J Trop Med Hyg ; 97(3): 702-711, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28749773

ABSTRACT

Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40-60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose-response was evident in G6PD-heterozygous subjects (N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (-2.65 to -2.95 g/dL [N = 3]) and primaquine (-1.25 to -3.0 g/dL [N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61-80% (N = 2) and > 80% (N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days.


Subject(s)
Aminoquinolines/adverse effects , Antimalarials/adverse effects , Gene Expression Regulation, Enzymologic , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glucosephosphate Dehydrogenase/metabolism , Heterozygote , Adolescent , Adult , Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Case-Control Studies , Dose-Response Relationship, Drug , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...