Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 15: 1399718, 2024.
Article in English | MEDLINE | ID: mdl-39045589

ABSTRACT

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a significant economic and quarantine pest due to its polyphagous nature. The accurate identification of B. dorsalis is challenging at the egg, maggot, and pupal stages, due to lack of distinct morphological characters and its similarity to other fruit flies. Adult identification requires specialized taxonomist. Existing identification methods are laborious, time consuming, and expensive. Rapid and precise identification is crucial for timely management. By analyzing the variations in the mitochondrial cytochrome oxidase-1 gene sequence (Insect barcoding gene), we developed a species-specific primer (SSP), DorFP1/DorRP1, for accurate identification of B. dorsalis. The optimal annealing temperature for the SSP was determined to be 66°C, with no cross-amplification or primer-dimer formation observed. The SSP was validated with B. dorsalis specimens from various locations in northern and eastern India and tested for cross-specificity with six other economically significant fruit fly species in India. The primer specificity was further confirmed by the analysis of critical threshold (Ct) value from a qPCR assay. Sensitivity analysis showed the primer could detect template DNA concentrations as low as 1 pg/µl, though sensitivity decreased at lower concentrations. Sequencing of the SSP-amplified product revealed over >99% similarity with existing B. dorsalis sequences in the NCBI GenBank. The developed SSP reliably identifies B. dorsalis across all developmental stages and sexes. This assay is expected to significantly impact pest identification, phytosanitary measures, and eradication programs for B. dorsalis.

2.
3 Biotech ; 12(10): 266, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36091088

ABSTRACT

The brown planthopper, Nilaparvata lugens (Stål) is a major sucking insect pest of rice. This insect has long been considered as migratory; however, its route in India is still unknown. Hence, to find out its migration route genetic diversity, genetic structure and gene flow of 16 N. lugens populations from major rice growing regions of India was studied based on mitochondrial cytochrome oxidase I (COI). The results revealed a high genetic homogeneity among the populations on the basis of genetic diversity statistics and neutrality tests. There was a prevalence of a single major haplotype across the country. No spatial relevance was found with the genetic structure of the populations indicating presence of excessive gene flow among them. Extensive gene flow among populations was also confirmed with the presence of higher number of immigrants in North, Central, and East India. To further clarify the migration sources, 48 h air-mass reverse trajectory was performed for Varanasi just aftermath of cyclones Amphan and Yaas, which disclosed Eastern/Northeastern states along with Bangladesh and Myanmar as the possible source areas. Overall, the results revealed a single panmictic homogeneous population of N. lugens in India with extensive gene flow as a consequence of their migration. These findings will help in better forecasting enabling efficient regional management of this important rice pest. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03337-6.

3.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269836

ABSTRACT

Plants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs. The biosynthesis of these metabolites is regulated by the interplay of signaling molecules comprising phytohormones. Plant volatile metabolites are released upon herbivore attack and are capable of directly inducing or priming hormonal defense signaling pathways. Secondary metabolites enable plants to quickly detect herbivore attacks and respond in a timely way in a rapidly changing scenario of pest and environment. Several studies have suggested that the potential for adaptation and/or resistance by insect herbivores to secondary metabolites is limited. These metabolites cause direct toxicity to insect pests, stimulate antixenosis mechanisms in plants to insect herbivores, and, by recruiting herbivore natural enemies, indirectly protect the plants. Herbivores adapt to secondary metabolites by the up/down regulation of sensory genes, and sequestration or detoxification of toxic metabolites. PSMs modulate multi-trophic interactions involving host plants, herbivores, natural enemies and pollinators. Although the role of secondary metabolites in plant-pollinator interplay has been little explored, several reports suggest that both plants and pollinators are mutually benefited. Molecular insights into the regulatory proteins and genes involved in the biosynthesis of secondary metabolites will pave the way for the metabolic engineering of biosynthetic pathway intermediates for improving plant tolerance to herbivores. This review throws light on the role of PSMs in modulating multi-trophic interactions, contributing to the knowledge of plant-herbivore interactions to enable their management in an eco-friendly and sustainable manner.


Subject(s)
Crop Protection , Herbivory , Animals , Herbivory/physiology , Insecta/physiology , Plant Growth Regulators , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...