Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 17(1): e004305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38288614

ABSTRACT

BACKGROUND: Pathogenic variants in PKP2 (plakophilin-2) cause arrhythmogenic right ventricular cardiomyopathy, a disease characterized by life-threatening arrhythmias and progressive cardiomyopathy leading to heart failure. No effective medical therapy is available to prevent or arrest the disease. We tested the hypothesis that adeno-associated virus vector-mediated delivery of the human PKP2 gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS: Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated PKP2 knockout murine model). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2 variant A. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS: Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS: These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Adult , Humans , Mice , Animals , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/therapy , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Plakophilins/genetics , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/metabolism , Tamoxifen/metabolism , Disease Progression , Mammals/metabolism
2.
J Immunol ; 206(11): 2552-2565, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34031147

ABSTRACT

CD40 ligand (CD40L) mRNA stability is dependent on an activation-induced pathway that is mediated by the binding complexes containing the multifunctional RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) to a 3' untranslated region of the transcript. To understand the relationship between regulated CD40L and the requirement for variegated expression during a T-dependent response, we engineered a mouse lacking the CD40L stability element (CD40LΔ5) and asked how this mutation altered multiple aspects of the humoral immunity. We found that CD40LΔ5 mice expressed CD40L at 60% wildtype levels, and lowered expression corresponded to significantly decreased levels of T-dependent Abs, loss of germinal center (GC) B cells and a disorganized GC structure. Gene expression analysis of B cells from CD40LΔ5 mice revealed that genes associated with cell cycle and DNA replication were significantly downregulated and genes linked to apoptosis upregulated. Importantly, somatic hypermutation was relatively unaffected although the number of cells expressing high-affinity Abs was greatly reduced. Additionally, a significant loss of plasmablasts and early memory B cell precursors as a percentage of total GL7+ B cells was observed, indicating that differentiation cues leading to the development of post-GC subsets was highly dependent on a threshold level of CD40L. Thus, regulated mRNA stability plays an integral role in the optimization of humoral immunity by allowing for a dynamic level of CD40L expression on CD4 T cells that results in the proliferation and differentiation of pre-GC and GC B cells into functional subsets.


Subject(s)
CD40 Ligand/immunology , Immunity, Humoral/immunology , RNA Stability/immunology , RNA, Messenger/immunology , Animals , CD40 Ligand/genetics , Mice , Mice, Inbred C57BL , RNA Processing, Post-Transcriptional/genetics , RNA Processing, Post-Transcriptional/immunology , RNA Stability/genetics , RNA, Messenger/genetics
3.
Mol Cancer Ther ; 19(10): 2068-2078, 2020 10.
Article in English | MEDLINE | ID: mdl-32747418

ABSTRACT

The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.


Subject(s)
Breast Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Animals , Breast Neoplasms/pathology , Female , Humans , Immunoconjugates/pharmacology , Lung Neoplasms/pathology , Mice , Mice, Nude , Stomach Neoplasms/pathology
4.
Mol Cancer Ther ; 12(1): 38-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23223830

ABSTRACT

Antibody-drug conjugates (ADC) represent a promising therapeutic modality for the clinical management of cancer. We sought to develop a novel ADC that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells (TIC), which comprise the most aggressive cell population in the tumor. We optimized an anti-5T4 ADC (A1mcMMAF) by sulfydryl-based conjugation of the humanized A1 antibody to the tubulin inhibitor monomethylauristatin F (MMAF) via a maleimidocaproyl linker. A1mcMMAF exhibited potent in vivo antitumor activity in a variety of tumor models and induced long-term regressions for up to 100 days after the last dose. Strikingly, animals showed pathologic complete response in each model with doses as low as 3 mg antibody/kg dosed every 4 days. In a non-small cell lung cancer patient-derived xenograft model, in which 5T4 is preferentially expressed on the less differentiated tumor cells, A1mcMMAF treatment resulted in sustained tumor regressions and reduced TIC frequency. These results highlight the potential of ADCs that target the most aggressive cell populations within tumors, such as TICs. In exploratory safety studies, A1mcMMAF exhibited no overt toxicities when administered to cynomolgus monkeys at doses up to 10 mg antibody/kg/cycle × 2 and displayed a half-life of 5 days. The preclinical efficacy and safety data established a promising therapeutic index that supports clinical testing of A1mcMMAF.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Membrane Glycoproteins/metabolism , Neoplastic Stem Cells/metabolism , Animals , Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal, Humanized/toxicity , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Macaca fascicularis , Male , Maximum Tolerated Dose , Membrane Glycoproteins/immunology , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Remission Induction , Tissue Distribution , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...