Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 216(Pt 4): 114669, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36404520

ABSTRACT

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the authors, editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. The publisher apologizes to the readers for this unfortunate erro

3.
Environ Res ; 212(Pt D): 113411, 2022 09.
Article in English | MEDLINE | ID: mdl-35561819

ABSTRACT

Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.


Subject(s)
Environmental Pollutants , Xenobiotics , Biodegradation, Environmental , Environmental Pollutants/metabolism , Humans , Plants/metabolism , Xenobiotics/metabolism
4.
Environ Res ; 210: 112902, 2022 07.
Article in English | MEDLINE | ID: mdl-35167851

ABSTRACT

Chromium is a toxic heavy metal prevalent in higher levels in aqueous matrices owing to industrial applications. Whilst being a key player in industries, the environmental issues caused by Cr(VI) are highly deleterious. Adsorptive remediation is found to be an effective method adopted by researchers in the past decades for Cr(VI) removal from water streams in which variety of naturally available biosorbents have been explored for handling Cr(VI). This review article briefly sketches up the biosorptive potential of plant-based biosorbents used in raw and chemically modified form for the optimum exclusion of Cr(VI) from aqueous sources. Mechanisms and kinetic behavior of the removal process are also discussed. pH of the solution and initial Cr(VI) concentration were found to be the key parameters in Cr removal. The mechanism of Cr removal from aqueous systems was elucidated to be either adsorption or adsorption-coupled-reduction. After precise discussion on various plant-based biosorbents with their maximum adsorption capacities, desorption and regeneration potential, it is perceived that plant-based biosorbents are superior options for Cr(VI) elimination from aqueous streams.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Plants , Solutions , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...