Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(2): 2988-2999, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250386

ABSTRACT

Luteolin is a flavonoid that possesses multiple beneficial biological properties, such as anticancer, antioxidant, and anti-inflammatory effects. The objective of this study is to test the hypothesis that luteolin can be transported across a cell via a nanodisc delivery system and delivered to intracellular sites. Luteolin was incorporated into reconstituted high-density lipoprotein complexes made up of apolipoprotein E3 (apoE3) N-terminal domain (apoE3NT) and 1,2-dimystrioyl-sn-glycero-3-phosphocholine. ApoE3NT confers the ability on nanodiscs to traverse the plasma membrane via low-density lipoprotein receptor or scavenger receptor-B1. Physicochemical characterization revealed that the nanodiscs were 17-22 nm in diameter as demonstrated by native polyacrylamide gel electrophoresis and dynamic lightering analysis and ∼660 kDa in size, with a luteolin content of ∼4 luteolin molecules/nanodisc. Luteolin appeared to be embedded in the nonpolar core of nanodiscs, as revealed by fluorescence quenching and polarization analysis and spectroscopic characterization. The presence of luteolin did not affect the ability of apoE3NT to mediate binding and cellular uptake of luteolin containing nanodiscs in macrophages, as inferred from immunofluorescence analysis that revealed apoE- and lipid-related fluorescence as punctate perinuclear vesicles and from flow cytometry studies. Lastly, luteolin appeared to be localized in the nucleus, having escaped the lysosomes following disassembly of the nanodiscs as suggested by fluorescence spectroscopy and microscopy analyses. Taken together, nanodiscs offer the potential to effectively transport luteolin and potentially therapeutic drugs into perinuclear sites in cells, where they can be available to enter the nucleus.

2.
Biochim Biophys Acta Biomembr ; 1866(1): 184230, 2024 01.
Article in English | MEDLINE | ID: mdl-37704040

ABSTRACT

Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Apolipoprotein E3 , Lipid Bilayers/chemistry , Dimyristoylphosphatidylcholine/chemistry , Phospholipids/chemistry , Proteins
3.
ArXiv ; 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37645042

ABSTRACT

Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.

4.
FEBS J ; 290(11): 3006-3025, 2023 06.
Article in English | MEDLINE | ID: mdl-36661393

ABSTRACT

High levels of 4-hydroxynonenal (HNE), arising from lipid peroxidation, and HNE-modified proteins have been identified in postmortem brains of ageing and Alzheimer's disease (AD) patients. The goal of this study is to understand the effect of HNE modification on the structure and function of recombinant apolipoprotein E3 (apoE3) and apolipoprotein E4 (apoE4), which play a critical role in brain cholesterol homeostasis. The two isoforms differ in a single amino acid at position 112: Cys in apoE3 and Arg in apoE4. Immunoblot with HNE-specific antibody indicates HNE modification of apoE3 and apoE4 with a major band at ~ 36 kDa, while LC-MS/MS revealed Michael addition at His140 (60-70% abundance) and His299 (3-5% abundance) in apoE3 and apoE4, and Cys112 adduct in apoE3 (75% abundance). Circular dichroism spectroscopy revealed no major differences in the overall secondary structure or helical content between unmodified and HNE-modified apoE. HNE modification did not affect their ability to promote cholesterol efflux from J774.1 macrophages. However, it led to a 3-fold decrease in their ability to bind lipids and 25-50% decrease in the ability of cerebral cortex endothelial cells to uptake lipoproteins bearing HNE-modified HNE-apoE3 or HNE-apoE4 as noted by fluorescence microscopy and flow cytometry. Taken together, the data indicate that HNE modification impairs lipid binding and cellular uptake of both isoforms, and that apoE3, bearing a Cys, offers a protective role by sequestering lipid peroxidation products that would otherwise cause indiscriminate damage to biomolecules. ApoE4, lacking Cys, is unable to protect against oxidative damage that is commensurate with ageing.


Subject(s)
Apolipoprotein E4 , Endothelial Cells , Humans , Apolipoprotein E3/chemistry , Apolipoprotein E4/chemistry , Endothelial Cells/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Apolipoproteins E/chemistry , Cholesterol , Protein Isoforms/genetics
5.
Mol Cell Biochem ; 478(1): 173-183, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35763125

ABSTRACT

Apolipoprotein E3 (apoE) is a critical cholesterol transport protein in humans and is composed of two domains: a well characterized N-terminal (NT) domain that harbors the low-density lipoprotein LDL receptor, and a less understood C-terminal (CT) domain that is the site of protein oligomerization and initiation of lipid binding. To better understand the domain structure of apoE, the CT domain was fused to apolipophorin III (apoLp-III), a single-domain, monomeric apolipoprotein of insect origin, to yield a chimeric protein, apoLp-III/CT-apoE. Recombinant apoLp-III/CT-apoE maintained an overall helical content similar to that of the parent proteins, while chemical induced unfolding studies indicated that its structural integrity was not compromised. Analysis using 1-anilinonaphthalene-8-sulfonic acid (ANS), a sensitive fluorescent indicator of exposed hydrophobic sites and protein folding, demonstrated that whereas apoLp-III provided few ANS binding sites, apoLp-III/CT-apoE harbored an abundance of ANS binding sites. Thus, this indicated tertiary structure formation in CT-apoE when part of the chimera. Size-exclusion chromatography and chemical crosslinking analysis demonstrated that while apoLp-III is monomeric, the chimeric protein formed large oligomeric complexes, similar to native apoE3. Compared to apoLp-III, the chimera showed a two-fold enhancement in phospholipid vesicle solubilization rates and a significantly improved ability to bind to lipolyzed low-density lipoprotein, preventing the onset of lipoprotein aggregation at concentrations comparable to that of parent CT-apoE. These results confirm that high lipid binding and self-association sites are located in the CT domain of apoE, and that these properties can be transferred to an unrelated apolipoprotein, demonstrating that these properties operate independently from the NT domain.


Subject(s)
Apolipoproteins E , Apolipoproteins , Humans , Apolipoproteins/genetics , Apolipoproteins/chemistry , Apolipoproteins E/metabolism , Recombinant Proteins/metabolism , Lipoproteins, LDL/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Protein Binding
6.
Nanomaterials (Basel) ; 10(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397159

ABSTRACT

Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.

7.
Int J Mol Sci ; 20(18)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533203

ABSTRACT

Apolipoprotein E3 (apoE3) plays a critical role in the metabolism of lipoproteins and lowers plasma lipid levels by serving as a ligand for the low-density lipoprotein receptor (LDLr) family of proteins and by promoting macrophage cholesterol efflux. The current study examines the effect of acrolein (an endogenously generated metabolite and an environmental pollutant) modification on the structure and function of apoE3. Acrolein modification was confirmed in Western blots by reactivity with acrolein-lysine-specific antibody and by the presence of oligomeric species due to cross-linking. LC-MS/MS analysis revealed modification of 10 out of 12 lysines in apoE3, with Nε-(3-methylpyridinium)-lysine being the predominant form of modification, and Lys75 being a 'hot spot' in terms of susceptibility to oxidation. Circular dichroism spectroscopy showed no major change in overall secondary structure compared to unmodified apoE3. Reconstituted high density lipoprotein (HDL) bearing acrolein modified apoE3 showed loss of binding to soluble LDLr; however, incubation with mouse endothelioma bEnd.3 cells showed that it was internalized. Incubation with excess LDL did not abolish cellular uptake of acrolein modified apoE3, suggesting alternative mechanism(s) not involving LDLr. Incubation with anti-CD36 antibody did not show a decrease in internalization while incubation with anti- lectin-like oxidized LDL receptor 1 (LOX1) showed partial internalization. However, incubation with anti-scavenger receptor class B type I (SRB1) antibody abolished internalization of acrolein modified apoE3. Taken together, our studies suggest that acrolein modification of apoE3 at lysine residues leads to increase in net negative charge, and as a consequence, results in clearance by LOX1 and SRB1 on endothelial cells. Overall, oxidative modification of apoE3 likely impairs its role in regulating plasma cholesterol homeostasis, eventually leading to lipid disorders.


Subject(s)
Apolipoprotein E3/metabolism , Cerebral Cortex/metabolism , Endothelial Cells/metabolism , Oxidation-Reduction , Acrolein/metabolism , Biomarkers , Humans , Lipoproteins/metabolism , Mass Spectrometry , Protein Binding , Protein Transport
8.
J Clin Endocrinol Metab ; 104(10): 4848-4856, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30920627

ABSTRACT

CONTEXT: In end-stage renal disease (ESRD), serum high-density lipoprotein cholesterol (HDL-C) level is not an accurate predictor of mortality, partly because it does not necessarily correlate with indices of HDL function. Paraoxonase (PON) is a major enzyme constituent of HDL and a key component of HDL antioxidant activity. Apolipoprotein A-I (Apo A-1) is the core HDL structural protein that plays a major role in various aspects of HDL function. OBJECTIVE: We sought to examine PON activity and Apo A-I levels in patients with ESRD vs healthy controls. DESIGN AND SETTING: PON/arylesterase activity was measured in 499 patients with maintenance hemodialysis (MHD) and 24 healthy controls with similar distributions of age, sex, and race/ethnicity. Serum acrolein-modified Apo A-I was measured in 30 patients with MHD and 10 healthy controls. MAIN OUTCOME MEASURES: Multilevel Cox models were used to assess associations among PON activity, Apo A-I, and HDL-C levels with 12-month all-cause mortality. RESULTS: PON activity was significantly lower in patients with MHD vs controls. Furthermore, acrolein-modified Apo A-I levels were higher in patients with MHD vs controls. In fully adjusted models, high PON activity was associated with lower 12-month mortality, whereas no difference of mortality risk was observed across HDL-C levels. The combination of high PON and low Apo A-I compared with low PON and low Apo A-I was associated with lower mortality risk. CONCLUSIONS: In patients with MHD, PON activity had a stronger association with 12-month mortality than HDL-C. Future studies are needed to examine the role of these markers as potential diagnostic and therapeutic tools in ESRD.


Subject(s)
Aryldialkylphosphatase/blood , Carboxylic Ester Hydrolases/blood , Kidney Failure, Chronic , Renal Dialysis , Adult , Aged , Apolipoprotein A-I/blood , Biomarkers/blood , Case-Control Studies , Cause of Death , Cholesterol, HDL/blood , Cohort Studies , Female , Humans , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/therapy , Male , Middle Aged , Renal Dialysis/mortality , Survival Analysis
9.
FEBS J ; 286(10): 1986-1998, 2019 05.
Article in English | MEDLINE | ID: mdl-30802357

ABSTRACT

Apolipoprotein E (apoE) is a 299 residue, exchangeable apolipoprotein that has essential roles in cholesterol homeostasis and reverse cholesterol transport. It is a two-domain protein with the C-terminal (CT) domain mediating protein self-association via helix-helix interactions. In humans, the APOE gene is polymorphic with three common alleles, ε2, ε3, and ε4, occurring in frequencies of ~ 5%, 77%, and 18%, respectively. Heterozygotes expressing apoE3 and apoE4 isoforms, which differ in residue at position 112 in the N-terminal domain (C112 in apoE3 and R112 in apoE4), represent the highest population of ε4 carriers, an allele highly associated with Alzheimer's disease. The objective of this study was to determine if apoE3 and apoE4 have the ability to hybridize to form a heteromer in lipid-free state. Refolding an equimolar mixture of His-apoE3 and FLAG-apoE4 (or vice versa) followed by pull-down and immunoblotting indicated formation of apoE3/apoE4 heteromers. Förster resonance energy transfer between donor fluorophore on one isoform and acceptor on the other, both located in the respective CT domains, revealed a distance of separation of ~ 46 Å between the donor/acceptor pair. Similarly, a quencher placed on one was able to mediate significant quenching of fluorescence emission on the other, indicative of spatial proximity within collisional distance between the two. ApoE3/apoE4 heteromer association was also noted in lipid-associated state in reconstituted lipoprotein particles. The possibility of heteromerization of apoE3/apoE4 bears implications in the potential mitigating role of apoE3 on the folding and physiological behavior of apoE4 and its role in maintaining cholesterol homeostasis.


Subject(s)
Apolipoprotein E3/chemistry , Apolipoprotein E3/metabolism , Apolipoprotein E4/chemistry , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Circular Dichroism , Fluorescence , Fluorescence Resonance Energy Transfer , Humans , Phosphatidylcholines/chemistry , Protein Conformation , Protein Denaturation , Protein Interaction Domains and Motifs , Protein Multimerization
10.
Biochim Biophys Acta Proteins Proteom ; 1866(11): 1165-1173, 2018 11.
Article in English | MEDLINE | ID: mdl-30282614

ABSTRACT

Apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in cholesterol homeostasis. The N-terminal (NT) domain of apoE3 (residues 1-191) is folded into a helix bundle comprised of 4 amphipathic α-helices: H1, H2, H3 and H4, flanked by flexible helices N1 and N2, and Hinge Helix 1 (Hinge H1), at the N-and C-terminal sides of the helix bundle, respectively. The NT domain plays a critical role in binding to the low density lipoprotein receptor (LDLR), which eventually leads to lowering of plasma cholesterol levels. In order to be recognized by the LDLR, the helix bundle has to open and undergo a conformational change. The objective of the study was to understand the mechanism of opening of the helix bundle. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) revealed that apoE3 NT domain adopts several disordered and unfolded regions, with H2 exhibiting relatively little protection against exchange-in compared to H1, H3, and H4. Site-directed fluorescence labeling indicated that H2 not only has the highest degree of solvent exposure but also the most flexibility in the helix bundle. It also indicated that the lipoprotein behavior of H1 was significnatly different from that of H2, H3 and H4. These results suggest that the opening of the helix bundle is likely initiated at the flexible end of H2 and the loop linking H2/H3, and involves movement of H2/H3 away from H1/H4. Together, these observations offer mechanistic insight suggesting a regulated helix bundle opening of apoE3 NT domain can be triggered by lipid binding.


Subject(s)
Apolipoproteins E/chemistry , Mass Spectrometry , Receptors, LDL/chemistry , Spectrometry, Fluorescence , Binding Sites , Circular Dichroism , Deuterium , Escherichia coli , Humans , Hydrogen , Lipid Metabolism , Protein Binding , Protein Conformation
11.
Int J Nanomedicine ; 12: 8495-8510, 2017.
Article in English | MEDLINE | ID: mdl-29225464

ABSTRACT

We have developed a high-density lipoprotein (HDL)-based platform for transport and delivery of hydrophobic gold nanoparticles (AuNPs). The ability of apolipoprotein E3 (apoE3) to act as a high-affinity ligand for the low-density lipoprotein receptor (LDLr) was exploited to gain entry of HDL with AuNPs into glioblastoma cells. AuNPs of 3, 10, and 17 nm diameter, the latter two synthesized by phase transfer process, were solubilized by integration with phospholipids and apoE3, yielding reconstituted HDL (rHDL) bearing AuNPs. Ultraviolet-visible spectra of rHDL-AuNP indicated the presence of stable particles with surface plasmon band at ~530 nm. Transmission electron microscopy (TEM) of rHDL-AuNP revealed roughly spherical particles with AuNPs embedded in the core. The rHDL-AuNP particles displayed robust binding to the LDLr and were internalized by receptor-mediated endocytosis in glioblastoma cells. Confocal microscopy confirmed cellular uptake of AuNPs in the endosomal-lysosomal compartments, while TEM revealed intracellular aggregated AuNPs. Cell viability assay demonstrated that >85% of cells were viable with rHDL-AuNP treatment of 0.1-100 µg/mL for 24 hours. These findings are significant since they offer an effective means of delivering AuNPs across the cell membrane, which is particularly relevant in tumor cells that overexpress LDLr.


Subject(s)
Apolipoprotein E3/metabolism , Lipoproteins, HDL/pharmacokinetics , Metal Nanoparticles/chemistry , Apolipoprotein E3/genetics , Cell Line, Tumor , Endocytosis/drug effects , Endocytosis/physiology , Gold/chemistry , Gold/pharmacokinetics , Humans , Hydrophobic and Hydrophilic Interactions , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/genetics , Lipoproteins, HDL3 , Microscopy, Electron, Transmission , Particle Size , Phospholipids/chemistry , Receptors, LDL/metabolism , Spectrophotometry, Ultraviolet
12.
PLoS One ; 12(6): e0178346, 2017.
Article in English | MEDLINE | ID: mdl-28644829

ABSTRACT

Apolipoprotein (apo) E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues) is composed of an N-terminal (NT) domain bearing a 4-helix bundle and a C-terminal (CT) domain bearing a series of amphipathic α-helices. ApoAI (243 residues) also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.


Subject(s)
Apolipoprotein A-I/metabolism , Apolipoprotein E3/metabolism , Apolipoprotein A-I/chemistry , Apolipoprotein E3/chemistry , Cell Line, Tumor , Chromatography, Affinity , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Escherichia coli , Glioblastoma/metabolism , Humans , Immunoblotting , Macrophages/metabolism , Mass Spectrometry , Protein Binding , Protein Domains , Protein Structure, Secondary , Protein Unfolding , Receptors, LDL/metabolism , Spectrometry, Fluorescence , Structure-Activity Relationship , Transfection
13.
Biochim Biophys Acta Biomembr ; 1859(8): 1317-1325, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28434970

ABSTRACT

Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III.


Subject(s)
Apolipoprotein A-I/chemistry , Apolipoproteins/chemistry , Insect Proteins/chemistry , Lipopolysaccharides/chemistry , Lipoproteins, LDL/chemistry , Recombinant Fusion Proteins/chemistry , Animals , Apolipoprotein A-I/genetics , Apolipoproteins/genetics , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Grasshoppers/chemistry , Humans , Insect Proteins/genetics , Kinetics , Lipid Droplets/chemistry , Models, Molecular , Phosphatidylglycerols/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Engineering , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Recombinant Fusion Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solubility , Thermodynamics , Type C Phospholipases/chemistry
14.
Glia ; 64(8): 1363-80, 2016 08.
Article in English | MEDLINE | ID: mdl-27258849

ABSTRACT

The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Ependymoglial Cells/metabolism , Neural Stem Cells/physiology , Receptors, LDL/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apolipoproteins E/metabolism , Apoptosis/physiology , Cells, Cultured , Cerebral Cortex/metabolism , Cholesterol/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Low Density Lipoprotein Receptor-Related Protein-1 , Mice, Inbred C57BL , Mice, Transgenic , Oligodendroglia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Spinal Cord/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
15.
Protein Pept Lett ; 23(4): 404-13, 2016.
Article in English | MEDLINE | ID: mdl-26902251

ABSTRACT

BACKGROUND: Human apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in maintaining plasma cholesterol/triglyceride homeostasis. The C-terminal (CT) domain of apoE3 (residues 201-299) is composed of amphipathic α-helices C1: W210-S223, C2: V236-E266, and C3: D271-W276, which play a dominant role in mediating high-affinity lipid binding. OBJECTIVE: The objective is to understand the accessibility of the CT domain at the sub-domain level and the mechanistic details regarding lipid-binding interaction. METHODS: Hydrogen-deuterium exchange coupled to mass spectrometry (HDX/MS) of recombinant wild type (WT) apoE(201-299), chemical-induced unfolding monitored as changes in fluorescence polarization (FP) of labeled apoE(201-299) bearing a probe at specified sites, and lipid binding studies were carried out. RESULTS: HDX/MS revealed that residues towards the C-terminal end of the domain display significantly lower %D uptake compared to those towards the center, suggesting extensive protein-protein interaction in this segment. Functional assays showed that locking apoE(201-299) in an inter-molecular disulfide-bonded state at position 209, 223, 255, or 277 significantly decreases its ability to interact with lipids, especially when tethered towards the ends; this could be restored by reduction. Unfolding studies indicate that the C-terminal end offers less resistance to unfolding compared to the central portion of the domain. CONCLUSION: Taken together, our data suggest that two dimers of CT domain are juxtaposed around helix C3 leading to apoE3 tetramerization, and that dissociation to monomeric units is a required step in lipid binding, with helix C3 likely seeking stability via lipid interaction prior to helices C1 or C2.


Subject(s)
Apolipoprotein E3/chemistry , Apolipoprotein E3/metabolism , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Lipid Metabolism , Deuterium Exchange Measurement , Fluorescence Polarization , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Multimerization , Protein Unfolding , Spectrometry, Fluorescence
16.
PLoS One ; 10(8): e0135130, 2015.
Article in English | MEDLINE | ID: mdl-26258481

ABSTRACT

The objective of this study is to transport and deliver resveratrol to intracellular sites using apolipoprotein E3 (apoE3). Reconstituted high-density lipoprotein (rHDL) bearing resveratrol (rHDL/res) was prepared using phospholipids and the low-density lipoprotein receptor (LDLr)-binding domain of apoE3. Biophysical characterization revealed that resveratrol was partitioned into the phospholipid bilayer of discoidal rHDL/res particles (~19 nm diameter). Co-immunoprecipitation studies indicated that the LDLr-binding ability of apoE3 was retained. Cellular uptake of resveratrol to intracellular sites was evaluated in glioblastoma A-172 cells by direct fluorescence using chemically synthesized NBD-labeled resveratrol (res/NBD) embedded in rHDL/res. Competition and inhibition studies indicate that the uptake is by receptor mediated endocytosis via the LDLr, with co-localization of apoE3 and res/NBD in late endosomes/lysosomes. We propose that rHDL provides an ideal hydrophobic milieu to sequester resveratrol and that rHDL containing apoE3 serves as an effective "nanovehicle" to transport and deliver resveratrol to targeted intracellular sites.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apolipoprotein E3/metabolism , Drug Delivery Systems/methods , Endosomes/metabolism , Neuroglia/drug effects , Stilbenes/pharmacology , Antineoplastic Agents, Phytogenic/metabolism , Apolipoprotein E3/chemistry , Azoles , Cell Line, Tumor , Endocytosis , Endosomes/drug effects , Fluorescent Dyes , Humans , Hydrophobic and Hydrophilic Interactions , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Nitrobenzenes , Particle Size , Protein Structure, Tertiary , Receptors, LDL/chemistry , Receptors, LDL/metabolism , Resveratrol , Staining and Labeling/methods , Stilbenes/metabolism
17.
Biochem Biophys Res Commun ; 450(1): 124-8, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24866239

ABSTRACT

Apolipoprotein E3 (apoE3) is an anti-atherogenic apolipoprotein with the ability to exist in lipid-free and lipoprotein-associated states. During atherosclerosis, its function in promoting cholesterol efflux from macrophages via the ATP-binding cassette transporter A1 (ABCA1) takes a prominent role, leading to generation of nascent high density lipoprotein (nHDL) particles. The objective of this study is to understand the conformation adopted by apoE3 in macrophage-generated nHDL using a fluorescence spectroscopic approach involving pyrene. Pyrene-labeled recombinant human apoE3 displayed a robust ability to stimulate ABCA1-mediated cholesterol efflux from cholesterol-loaded J774 macrophages (which do not express apoE), comparable to that elicited by unlabeled apoE3. The nHDL recovered from the conditioned medium revealed the presence of apoE3 by immunoblot analysis. A heterogeneous population of nHDL bearing exogenously added apoE3 was generated with particle size varying from ∼12 to ∼19 nm in diameter, corresponding to molecular mass of ∼450 to ∼700 kDa. The lipid: apoE3 ratio varied from ∼60:1 to 10:1. A significant extent of pyrene excimer emission was noted in nHDL, indicative of spatial proximity between Cys112 on neighboring apoE3 molecules similar to that noted in reconstituted HDL. Cross-linking analysis using Cys-specific cross-linkers revealed the predominant presence of dimers. Taken together the data indicate a double belt arrangement of apoE molecules on nHDL. A similar organization of the C-terminal tail of apoE on nHDL was noted when pyrene-apoEA277C(201-299) was used as the cholesterol acceptor. These studies open up the possibility of using exogenously labeled apoE3 to generate nHDL for structural and conformational analysis.


Subject(s)
Apolipoprotein E3/chemistry , Apolipoprotein E3/metabolism , High-Density Lipoproteins, Pre-beta/chemistry , High-Density Lipoproteins, Pre-beta/metabolism , Macrophages/metabolism , Pyrenes/chemistry , Spectrometry, Fluorescence/methods , Animals , Cell Line , Humans , Mice , Microscopy, Fluorescence/methods , Protein Conformation , Pyrenes/metabolism , Staining and Labeling
18.
Biochemistry ; 53(2): 361-75, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24325674

ABSTRACT

Apolipoprotein E (apoE), an antiatherogenic apolipoprotein, plays a significant role in the metabolism of lipoproteins. It lowers plasma lipid levels by acting as a ligand for the low-density lipoprotein receptor (LDLr) family of proteins, in addition to playing a role in promoting macrophage cholesterol efflux in atherosclerotic lesions. The objective of this study is to examine the effect of acrolein modification on the structure and function of rat apoE and to determine the sites and nature of modification by mass spectrometry. Acrolein is a highly reactive aldehyde, which is generated endogenously as one of the products of lipid peroxidation and is present in the environment in pollutants such as tobacco smoke and heated oils. In initial studies, acrolein-modified apoE was identified by immunoprecipitation using an acrolein-lysine specific antibody in the plasma of 10-week old male rats that were exposed to filtered air (FA) or low doses of environmental tobacco smoke (ETS). While both groups displayed acrolein-modified apoE in the lipoprotein fraction, the ETS group had higher levels in the lipid-free fraction compared with the FA group. This observation provided the rationale to further investigate the effect of acrolein modification on rat apoE at a molecular level. Treatment of recombinant rat apoE with a 10-fold molar excess of acrolein resulted in (i) a significant decrease in lipid-binding and cholesterol efflux abilities, (ii) impairment in the LDLr- and heparin-binding capabilities, and (iii) significant alterations in the overall stability of the protein. The disruption in the functional abilities is attributed directly or indirectly to acrolein modification yielding an aldimine adduct at K149 and K155 (+38); a propanal adduct at K135 and K138 (+56); an N(ε)-(3-methylpyridinium)lysine (MP-lysine) at K64, K67, and K254 (+76), and an N(ε)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) derivative at position K68 (+94), as determined by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). The loss of function may also be attributed to alterations in the overall fold of the protein as noted by changes in the guanidine HCl-induced unfolding pattern and to protein cross-linking. Overall, disruption of the structural and functional integrity of apoE by oxidative modification of essential lysine residues by acrolein is expected to affect its role in maintaining plasma cholesterol homeostasis and lead to dysregulation in lipid metabolism.


Subject(s)
Acrolein/pharmacology , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Acrolein/chemistry , Amino Acid Sequence , Animals , Humans , Male , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
19.
Biochem Biophys Res Commun ; 441(1): 71-6, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24129191

ABSTRACT

ATI-5261 is a novel, single-helix peptide that stimulates cellular cholesterol efflux with high potency similar to native apolipoproteins on a molar basis. Presently we investigated structural features of the peptide that conferred cholesterol efflux activity. Analogs of ATI-5261 with amino acids arranged in reverse order or with individual arginine (R) to glutamine (Q) substitutions (i.e. R3Q, R14Q, or R23Q) stimulated ABCA1 dependent cholesterol efflux similar to ATI-5261. Consequently, neither the presence of specific positively charged residues nor their specific arrangement along the length of the peptide was necessary for mediating cholesterol efflux. Similarly, peptides composed of all d-amino acids stimulated cholesterol efflux efficiently, indicating a stereospecific component was not required for promotion of cholesterol efflux from macrophages. Removal of two or more positively charged residues (R3, 14→Q and R3, 14, 23→Q) however, greatly reduced the ability of ATI-5261 to mediate cellular cholesterol efflux. This was accompanied by a loss of α-helical structure upon dilution, indicating the secondary structure of individual peptide strands was important for stimulating cholesterol efflux. Surprisingly, peptides with removal of two or more positively charged residues retained the ability to bind phospholipid and adopt an α-helical structure. These data indicate that the propensity of a hydrophobic peptide to form an amphipathic α-helix is not sufficient to mediate cellular cholesterol efflux. Efficient stimulation of cholesterol efflux requires that ATI-5261 retain α-helical structure upon dilution.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cholesterol/metabolism , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Animals , Biological Transport , Biophysical Phenomena , Cell Line , Dimyristoylphosphatidylcholine , Intercellular Signaling Peptides and Proteins , Lipid Metabolism , Mice , Molecular Sequence Data , Protein Structure, Secondary , Sequence Homology, Amino Acid , Structure-Activity Relationship
20.
Arch Biochem Biophys ; 529(1): 18-25, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23103361

ABSTRACT

Apolipoprotein E (apoE) is an anti-atherogenic protein that plays a critical role in maintaining plasma cholesterol and triglyceride homeostasis by virtue of its ability to act as a ligand for the low-density lipoprotein receptor (LDLr) family of proteins. In this study, we characterized the biochemical and biophysical features of recombinant rat apoE, in comparison with those of human apoE3. Rat apoE was overexpressed in Escherichia coli using a codon optimized system and purified by affinity chromatography. SDS-PAGE and RP-HPLC of rat apoE confirmed the purity, while immunoblot verified the identity and cross-reactivity with the LDLr-binding region of apoE3. The α-helical content was calculated to be ~45% by circular dichroism spectroscopy. The protein exists in a predominantly tetrameric form in lipid-free state. Chemical denaturation studies reveal that the unfolding pattern is biphasic with mid points of denaturation corresponding to 0.8 and 2.2 M guanidine hydrochloride, suggesting the presence of two domains. Rat apoE converts DMPC vesicles to smaller DMPC/apoE complexes with a first order rate constant of 0.12 min(-1). It has the ability to bind the LDLr and to heparin. Our studies indicate that although its sequence resembles apoE4, an isoform of apoE3, rat apoE displays the biophysical behavior of apoE3.


Subject(s)
Apolipoprotein E3/chemistry , Apolipoprotein E4/chemistry , Dimyristoylphosphatidylcholine/chemistry , Amino Acid Sequence , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Circular Dichroism , Dimyristoylphosphatidylcholine/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Heparin/chemistry , Heparin/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Secondary , Protein Unfolding , Rats , Receptors, LDL/chemistry , Receptors, LDL/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...