Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(10)2022 10 16.
Article in English | MEDLINE | ID: mdl-36291703

ABSTRACT

The bioavailability of copper (Cu) in human cells may depend on a complex interplay with zinc (Zn) ions. We investigated the ability of the Zn ion to target the human Cu-chaperone Atox1, a small cytosolic protein capable of anchoring Cu(I), by a conserved surface-exposed Cys-X-X-Cys (CXXC) motif, and deliver it to Cu-transporting ATPases in the trans-Golgi network. The crystal structure of Atox1 loaded with Zn displays the metal ion bridging the CXXC motifs of two Atox1 molecules in a homodimer. The identity and location of the Zn ion were confirmed through the anomalous scattering of the metal by collecting X-ray diffraction data near the Zn K-edge. Furthermore, soaking experiments of the Zn-loaded Atox1 crystals with a strong chelating agent, such as EDTA, caused only limited removal of the metal ion from the tetrahedral coordination cage, suggesting a potential role of Atox1 in Zn metabolism and, more generally, that Cu and Zn transport mechanisms could be interlocked in human cells.


Subject(s)
Copper , Metallochaperones , Humans , Copper Transport Proteins , Metallochaperones/chemistry , Metallochaperones/metabolism , Copper/chemistry , Copper-Transporting ATPases , Zinc/metabolism , Edetic Acid , Molecular Chaperones/metabolism , Chelating Agents , Ions/metabolism
2.
Front Mol Biosci ; 9: 897621, 2022.
Article in English | MEDLINE | ID: mdl-35601835

ABSTRACT

The 14mer peptide corresponding to the N-terminal region of human copper transporter Ctr1 was used to investigate the intricate mechanism of metal binding to this plasma membrane permease responsible for copper import in eukaryotic cells. The peptide contains a high-affinity ATCUN Cu(II)/Ni(II)-selective motif, a methionine-only MxMxxM Cu(I)/Ag(I)-selective motif and a double histidine HH(M) motif, which can bind both Cu(II) and Cu(I)/Ag(I) ions. Using a combination of NMR spectroscopy and electrospray mass spectrometry, clear evidence was gained that the Ctr1 peptide, at neutral pH, can bind one or two metal ions in the same or different oxidation states. Addition of ascorbate to a neutral solution containing Ctr11-14 and Cu(II) in 1:1 ratio does not cause an appreciable reduction of Cu(II) to Cu(I), which is indicative of a tight binding of Cu(II) to the ATCUN motif. However, by lowering the pH to 3.5, the Cu(II) ion detaches from the peptide and becomes susceptible to reduction to Cu(I) by ascorbate. It is noteworthy that at low pH, unlike Cu(II), Cu(I) stably binds to methionines of the peptide. This redox reaction could take place in the lumen of acidic organelles after Ctr1 internalization. Unlike Ctr11-14-Cu(II), bimetallic Ctr11-14-2Cu(II) is susceptible to partial reduction by ascorbate at neutral pH, which is indicative of a lower binding affinity of the second Cu(II) ion. The reduced copper remains bound to the peptide, most likely to the HH(M) motif. By lowering the pH to 3.5, Cu(I) shifts from HH(M) to methionine-only coordination, an indication that only the pH-insensitive methionine motif is competent for metal binding at low pH. The easy interconversion of monovalent cations between different coordination modes was supported by DFT calculations.

3.
ChemMedChem ; 17(1): e202100593, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34727402

ABSTRACT

The interaction of metallodrugs with proteins influences their mechanism of action and side effects. In the case of platinum drugs, copper transporters modulate sensitivity and resistance to these anticancer agents. To deepen the knowledge of the structural properties underlying the reactivity of platinum drugs with copper transporters, we studied the interaction of kiteplatin and two of its derivatives with the methionine-rich motif of copper importer Ctr1 and with the dithiol motif of the first domain of Menkes ATPase. Furthermore, cellular uptake and cytotoxicity of the three complexes were evaluated in cisplatin-sensitive and -resistant ovarian cancer cells, comparing the data with those of clinically relevant drugs. Reactivity depends on the tightness of the chelate ring formed by the carrier ligands and the nature of the leaving and entering groups. The results highlight the importance of subtle changes in the platinum coordination sphere that affect drug absorption and intracellular fate.


Subject(s)
Antineoplastic Agents/pharmacology , Copper Transporter 1/antagonists & inhibitors , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper Transporter 1/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
4.
ACS Omega ; 3(10): 12914-12922, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458014

ABSTRACT

Pt(II)-based derivatives bearing a cyanocobalamin (CNCbl) unit were synthesized in aqueous solutions, and the reaction mixtures were examined by reversed-phase liquid chromatography with electrospray ionization and linear ion trap mass spectrometry (MS). Isotopic pattern analysis, multistage mass-spectra (MS/MS and MS3) interpretation, and differential isotopic labeling were used to establish the chemical composition and to suggest the chemical structures of reaction products. When cisplatin (cis-[PtCl2(NH3)2]) was used as a Pt(II) drug derivative, a coordination bond between diamminemonochloroplatinum(II) and the cyano group of CNCbl, in turn linked covalently to the vitamin Co(III) ion, occurred. The resulting conjugate with a CoIII-CN-PtII bridge was MS detected as a doubly positive charged ion with the prevailing isotopologue at m/z 810.26 (empirical formula [C63H95ClCoIIIN16O14PPt]2+). Likewise, a peak signal centered at m/z 811.26 was observed when 15N-labeled cisplatin cis-[PtCl2(15NH3)2] was used as Pt(II) complex, thus confirming the presence of both the cisplatin amino groups in the conjugate. A bifunctional conjugate was obtained between CNCbl and the cis-diamminediaquaplatinum(II), that is, cis-[Pt(NH3)2(H2O)2]2+; in this case, the planar coordination complex of Pt(II) was also involved in a covalent bond with the oxygen atom of one of the CNCbl amide moieties. The peak signal detected at m/z 792.26 (empirical formula [C63H94CoIIIN16O14PPt]2+) changed to m/z 793.26 when the labeled cis-[Pt(15NH3)2(H2O)2]2+ complex was adopted for conjugation. Comparison between MS/MS spectra allowed an extended structural characterization of both conjugates, as such or 15N-labeled. Two-dimensional heteronuclear (1H-15N) single quantum correlation NMR spectroscopy, applied to 15N-labeled conjugates, supported the hypotheses made on the Pt(II) coordination in both cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...