Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570093

ABSTRACT

The functionalization of inorganic surfaces by organic functional molecules is a viable and promising method towards the realization of novel classes of biosensing devices. The proper comprehension of the chemical properties of the interface, as well as of the number of active binding sites for bioreceptor molecules are characteristics that will determine the interaction of the sensor with the analyte, and thus its final efficiency. We present a new and reliable surface functionalization route based on supersonic molecular beam deposition (SuMBD) using 2,6-naphthalene dicarboxylic acid as a bi-functional molecular linker on the chemically inert silicon nitride surface to further allow for stable and homogeneous attachment of biomolecules. The kinetically activated binding of the molecular layer to silicon nitride and the growth as a function of deposition time was studied by X-ray photoelectron spectroscopy, and the properties of films with different thicknesses were investigated by optical and vibrational spectroscopies. After subsequent attachment of a biological probe, fluorescence analysis was used to estimate the molecular layer's surface density. The successful functionalization of silicon nitride surface via SuMBD and the detailed growth and interface analysis paves the way for reliably attaching bioreceptor molecules onto the silicon nitride surface.

2.
Chem Mater ; 33(7): 2457-2465, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33859456

ABSTRACT

X-ray-activated near-infrared luminescent nanoparticles are considered as new alternative optical probes due to being free of autofluorescence, while both their excitation and emission possess a high penetration efficacy in vivo. Herein, we report silicon carbide quantum dot sensitization of trivalent chromium-doped zinc gallate nanoparticles with enhanced near-infrared emission upon X-ray and UV-vis light excitation. We have found that a ZnGa2O4 shell is formed around the SiC nanoparticles during seeded hydrothermal growth, and SiC increases the emission efficiency up to 1 order of magnitude due to band alignment that channels the excited electrons to the chromium ion.

3.
J Phys Condens Matter ; 31(6): 064002, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30523893

ABSTRACT

Hybrid inorganic/organic semiconductor heterojunctions are candidates to expand the scope of purely organic or inorganic junctions in electronic and optoelectronic devices. Comprehensive understanding of bulk and interface doping on the junction's electronic properties is therefore desirable. In this work, we elucidate the energy level alignment and its mechanisms at a prototypical hybrid pn-junction comprising ZnO (n-type) and p-doped N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (α-NPD) as semiconductors, using photoelectron spectroscopy. The level alignment can be quantitatively described by the interplay of contact-induced band and energy level bending in the inorganic and organic component away from the interface, and an interface dipole due to the push-back effect. By adjusting the dopant concentration in α-NPD, the position of the frontier energy levels of ZnO can be varied by over 0.5 eV and that of α-NPD by over 1 eV. The tunability of this pn-junction's energy levels evidences the substantial potential of the hybrid approach for enhancing device functionality.

4.
ACS Appl Mater Interfaces ; 10(40): 34392-34400, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30221920

ABSTRACT

Transition metal dichalcogenides, such as molybdenum disulfide (MoS2), show peculiar chemical/physical properties that enable their use in applications ranging from micro- and nano-optoelectronics to surface catalysis, gas and light detection, and energy harvesting/production. One main limitation to fully harness the potential of MoS2 is given by the lack of scalable and low environmental impact synthesis of MoS2 films with high uniformity, hence setting a significant challenge for industrial applications. In this work, we develop a versatile and scalable sol-gel-derived MoS2 film fabrication by spin coating deposition of an aqueous sol on different technologically relevant, flexible substrates with annealing at low temperatures (300 °C) and without the need of sulfurization and/or supply of hydrogen as compared to cutting-edge techniques. The electronic and physical properties of the MoS2 thin films were extensively investigated by means of surface spectroscopy and structural characterization techniques. Spatially homogenous nanocrystalline 2H-MoS2 thin films were obtained exhibiting high chemical purity and excellent electronic properties such as an energy band gap of 1.35 eV in agreement with the 2H phase of the MoS2, and a density of states that corresponds to the n-type character expected for high-quality 2H-MoS2. The potential use of sol-gel-grown MoS2 as the candidate material for electronic applications was tested via electrical characterization and demonstrated via the reversible switching in resistivity typical for memristors with a measured ON-OFF ratio ≥102. The obtained results highlight that the novel low-cost fabrication method has a great potential to promote the use of high-quality MoS2 in technological and industrial-relevant scalable applications.

5.
Nat Commun ; 9(1): 3689, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190476

ABSTRACT

The original version of this article incorrectly listed an affiliation of Sara Bonacchi as 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada', instead of the correct 'Present address: Department of Chemical Sciences - University of Padua - Via Francesco Marzolo 1 - 35131 Padova - Italy'. And an affiliation of Emanuele Orgiu was incorrectly listed as 'Present address: Department of Chemical Sciences, University of Padua, Via Francesco Marzolo 1, Padova, 35131, Italy', instead of the correct 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada'. This has been corrected in both the PDF and HTML versions of the article.

6.
Nat Commun ; 9(1): 2661, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29985413

ABSTRACT

Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices.

7.
ACS Appl Mater Interfaces ; 7(34): 19134-44, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26280572

ABSTRACT

A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a copper substrate. We find evidence for fundamentally different charge redistribution mechanisms in the two ternary systems, as a consequence of the insulating versus metallic character of the substrates. While electron transfer occurs exclusively from graphene to F6TCNNQ on the quartz support (p-doping of graphene), the Cu substrate electron reservoir induces an additional electron density flow to graphene decorated with the acceptor monolayer. Remarkably, graphene on Cu is n-doped and remains n-doped upon F6TCNNQ deposition. On both substrates, the work function of graphene increases substantially with a F6TCNNQ monolayer atop, the effect being more pronounced (∼1.3 eV) on Cu compared to quartz (∼1.0 eV) because of the larger electrostatic potential drop associated with the long-distance graphene-mediated Cu-F6TCNNQ electron transfer. We thus provide a means to realize high work function surfaces for both p- and n-type doped graphene.

8.
J Am Chem Soc ; 137(24): 7678-85, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-25932672

ABSTRACT

Here we present the formation of predominantly sp(2)-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, C6Cl6 (HCB), and pentachloropyridine, NC5Cl5 (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, photoelectron spectroscopy (XPS), and SQUID magnetometry to gain information on its morphological, chemical, and electronic structure and on the location of the nitrogen atoms within the carbon lattice. A significant lowering of the magnetization was observed for the nitrogen-doped carbon obtained by this method, which exhibits less ordered graphene domains in the range of approximately 10-30 nm as per TEM analysis compared to the nondoped carbon resulting from the reaction of HCB with larger graphene domains as per TEM and the presence of a 2D mode in the Raman spectra. The decrease of the magnetization by nitrogen doping within the sp(2)-coordinate carbon lattice can be attributed to an increase in pyrrole-type defects along with a reduction in radical defects originating from five-membered carbon ring structures as well as changes in the π-electron density of edge states.

9.
ACS Appl Mater Interfaces ; 7(22): 11900-7, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25986080

ABSTRACT

We used aromatic phosphonates with substituted phenyl rings with different molecular dipole moments to form self-assembled monolayers (SAMs) on the Zn-terminated ZnO(0001) surface in order to engineer the energy-level alignment at hybrid inorganic/organic semiconductor interfaces, with an oligophenylene as organic component. The work function of ZnO was tuned over a wide range of more than 1.7 eV by different SAMs. The difference in the morphology and polarity of the SAM-modified ZnO surfaces led to different oligophenylene orientation, which resulted in an orientation-dependent ionization energy that varied by 0.7 eV. The interplay of SAM-induced work function modification and oligophenylene orientation changes allowed tuning of the offsets between the molecular frontier energy levels and the semiconductor band edges over a wide range. Our results demonstrate the versatile use of appropriate SAMs to tune the energy levels of ZnO-based hybrid semiconductor heterojunctions, which is important to optimize its function, e.g., targeting either interfacial energy- or charge-transfer.

10.
Angew Chem Int Ed Engl ; 53(39): 10355-61, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25044532

ABSTRACT

The technological exploitation of the extraordinary properties of graphene relies on the ability to achieve full control over the production of a high-quality material and its processing by up-scalable approaches in order to fabricate large-area films with single-layer or a few atomic-layer thickness, which might be integrated in working devices. A simple method is reported for producing homogenous dispersions of unfunctionalized and non-oxidized graphene nanosheets in N-methyl-2-pyrrolidone (NMP) by using simple molecular modules, which act as dispersion-stabilizing compounds during the liquid-phase exfoliation (LPE) process, leading to an increase in the concentration of graphene in dispersions. The LPE-processed graphene dispersion was shown to be a conductive ink. This approach opens up new avenues for the technological applications of this graphene ink as low-cost electrodes and conducting nanocomposite for electronics.

11.
Chempluschem ; 79(3): 439-446, 2014 Mar.
Article in English | MEDLINE | ID: mdl-31986611

ABSTRACT

A facile and efficient method based on electrochemistry for the production of graphene-based materials for electronics is demonstrated. Uncharged acetonitrile molecules are intercalated in graphite by electrochemical treatment, owing to the synergic action of perchlorate ions dissolved in acetonitrile. Then, acetonitrile molecules are decomposed with microwave irradiation, which causes gas production and rapid graphite exfoliation, with an increase in the graphite volume of up to 600 %. Upon further processing and purification, highly dispersible nanosheets are obtained that can be processed into thin layers by roll-to-roll transfer or into thicker electrodes with excellent capacitance stability upon extensive charging/discharging cycles. The good exfoliation yield (>50 % of monolayers), minimal oxidation damage and good electrochemical stability of the nanosheets obtained were confirmed by scanning force and electron microscopy, as well as Raman spectroscopy and galvanostatic analyses.

12.
J Am Chem Soc ; 134(42): 17400-3, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23057581

ABSTRACT

Silicon carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting SiC-based technologies is the high-temperature synthesis. In this work, we provide unprecedented experimental and theoretical evidence of 3C-SiC epitaxy on silicon at room temperature by using a buckminsterfullerene (C(60)) supersonic beam. Chemical processes, such as C(60) rupture, are activated at a precursor kinetic energy of 30-35 eV, far from thermodynamic equilibrium. This result paves the way for SiC synthesis on polymers or plastics that cannot withstand high temperatures.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Nanoparticles/chemistry , Silicon Compounds/chemistry , Silicon/chemistry , Temperature , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...