Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 416(14): 3295-3303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696128

ABSTRACT

Thiabendazole, a widely used broad-spectrum fungicide in agriculture, poses risks to human health. To monitor its presence in water, we propose a fluorescent aptasensor utilizing Escherichia coli exonuclease I (Exo I). The findings demonstrate a linear correlation between thiabendazole concentrations and digestion percentage, with a detection limit (LOD) exceeding 1 µM and a determination coefficient (R2) of 0.959. This aptamer-based fluorescence spectroscopy detection system holds promise for a rapid, specific, and sensitive analysis of thiabendazole in environmental waters and food matrices.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Spectrometry, Fluorescence , Thiabendazole , Thiabendazole/analysis , Aptamers, Nucleotide/chemistry , Spectrometry, Fluorescence/methods , Biosensing Techniques/methods , Fungicides, Industrial/analysis , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Escherichia coli , Water Pollutants, Chemical/analysis , Fluorescent Dyes/chemistry
2.
Chemistry ; 30(17): e202303979, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38206093

ABSTRACT

Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.

3.
Anal Bioanal Chem ; 415(24): 5899-5924, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37668672

ABSTRACT

Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.


Subject(s)
Biosensing Techniques , Pesticide Residues , Pesticides , Humans , Pesticides/analysis , Pesticide Residues/analysis , Gas Chromatography-Mass Spectrometry/methods , Agriculture , Biosensing Techniques/methods
4.
Biomacromolecules ; 24(8): 3411-3437, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37462615

ABSTRACT

Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.


Subject(s)
Biosensing Techniques , Polymers , Polymers/chemistry , Antibodies , Oligonucleotides , Electricity
5.
Nanoscale ; 15(28): 11875-11883, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37395070

ABSTRACT

The beneficial redox properties of ferrocene-based polymers have been utilized during in situ preparation of metallic nanoparticles, while such redox features also indicate a great promise in applications as free radical scavengers. Here, colloidal dispersions of an antioxidant nanozyme composed of amidine-functionalized polystyrene latex (AL) nanoparticles, negatively charged poly(ferrocenylsilane) (PFS(-)) organometallic polyions, and ascorbic acid (AA) were formulated. The AL was first functionalized with PFS(-). Increasing the polymer dose resulted in charge neutralization and subsequent charge reversal of the particles. The strength of repulsive interparticle forces of electrostatic nature was significant at low and high doses leading to stable colloids, while attractive forces dominated near the charge neutralization point giving rise to unstable dispersions. The saturated PFS(-) layer adsorbed on the surface of the AL (p-AL nanozyme) enhanced the colloidal stability against salt-induced aggregation without affecting the pH-dependent charge and size of the particles. The joint effect of PFS(-) and the AA in radical decomposition was observed indicating the antioxidant potential of the system. The immobilization of PFS(-) deteriorated its scavenging activity, yet the combination with AA improved this feature. The results indicate that p-AL-AA is a promising radical scavenger since the high colloidal stability of the particles allows application in heterogeneous systems, such as in industrial manufacturing processes, where antioxidants are required to maintain acceptable product quality.

6.
J Colloid Interface Sci ; 640: 558-567, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36878073

ABSTRACT

The mixing of conventional and pH-sensitive lipids was exploited to design novel stimuli-responsive liposomes (fliposomes) that could be used for smart drug delivery. We deeply investigated the structural properties of the fliposomes and revealed the mechanisms that are involved in a membrane transformation during a pH change. From ITC experiments we observed the existence of a slow process that was attributed to lipid layers arrangement with changing pH. Moreover, we determined for the first time the pKa value of the trigger-lipid in an aqueous milieu that is drastically different from the methanol-based values reported previously in the literature. Furthermore, we studied the release kinetics of encapsulated NaCl and proposed a novel model of release that involves the physical fitting parameters that could be extracted from the release curves fitting. We have obtained for the first time, the values of pores self-healing times and were able to trace their evolution with changing pH, temperature, the amount of lipid-trigger.


Subject(s)
Drug Delivery Systems , Liposomes , Liposomes/chemistry , Lipids , Hydrogen-Ion Concentration
7.
Macromol Biosci ; 23(8): e2200508, 2023 08.
Article in English | MEDLINE | ID: mdl-36808212

ABSTRACT

N-phosphonomethyle-glycine (glyphosate) is the most widely used pesticide worldwide due to its effectiveness in killing weeds at a moderate cost, bringing significant economic benefits. However, owing to its massive use, glyphosate and its residues contaminate surface waters. On site, fast monitoring of contamination is therefore urgently needed to alert local authorities and raise population awareness. Here the hindrance of the activity of two enzymes, the exonuclease I (Exo I) and the T5 exonuclease (T5 Exo) by glyphosate, is reported. These two enzymes digest oligonucleotides into shorter sequences, down to single nucleotides. The presence of glyphosate in the reaction medium hampers the activity of both enzymes, slowing down enzymatic digestion. It is shown by fluorescence spectroscopy that the inhibition of ExoI enzymatic activity is specific to glyphosate, paving the way for the development of a biosensor to detect this pollutant in drinking water at suitable detection limits, i.e., 0.6 nm.


Subject(s)
Drinking Water , Herbicides , Herbicides/analysis , Herbicides/pharmacology , Glycine , Glyphosate
8.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406293

ABSTRACT

Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled 'Women in Polymer Science and Technology: Biopolymers' is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.

9.
ACS Chem Neurosci ; 12(15): 2851-2864, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34264635

ABSTRACT

The diphenylalanine (FF) residue which is present at the 19 and 20 positions of the amyloid beta (1-42) (Aß42) peptide sequence is considered as a reductionist model for studying Aß42 aggregation. FF self-assembles into well-ordered tubular structures via aromatic π-π stacking. Herein the manuscript, we have presented a chemical perspective on the mechanism of action of antiamyloid compounds by assessing their interaction with FF. Therefore, we first coincubated FF fibers with single amino acids, since they are constituted of different R side chains yet have a common structural unit. This study revealed a crucial role of aromatic rings and functional groups like thiol (-SH) in causing destabilization of FF assembly via their interaction with π-electrons participating in π-π stacking present in FF. We further studied the interaction of different nonsteroidal anti-inflammatory drugs (NSAIDs), other known antiamyloidogenic compounds, and host-guest inclusion compounds like cyclodextrin (CD) to assess their mechanism of action and to decipher the functional moiety present in these compounds which could cause destabilization of π-π stacking. From the coincubation experiments, we could surmise a crucial role of aromatic rings present in these compounds for causing interference in aromatic stacking. We further consolidated our observations through microscopy analysis by various spectroscopic methods such as aggregation-induced emission enhancement (AIEE), fluorescence spectroscopy, solution-state 1H NMR, FTIR, and circular dichroism. The studies presented in the manuscript thus provide significant insights into the role of functional groups in imparting antiamyloid action and open new avenues for an efficient design of antiamyloid drugs in the future.


Subject(s)
Amino Acids , Amyloid beta-Peptides , Circular Dichroism , Electrons , Magnetic Resonance Spectroscopy
10.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1168-1176, 2017 May.
Article in English | MEDLINE | ID: mdl-28267577

ABSTRACT

BACKGROUND: Alzheimer's disease is the most common neurodegenerative disease associated with aggregation of Aß peptides. Aß toxicity is mostly related to the capacity of intermediate oligomers to disrupt membrane integrity. We previously expressed Aß1-42 in a eukaryotic cellular system and selected synthetic variants on their sole toxicity. The most toxic mutant G37C forms stable oligomers. METHODS: Different biophysical methods (Fluorescence spectroscopy, cross-linking, mass spectrometry (MS), Small Angle X-ray Scattering (SAXS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), calcein leakage) were used. RESULTS: The oligomers are mostly populated by a 14mers resulting from the packing of homodimers. These homodimers come from the formation of a disulfide bridge between two monomers. This link stabilizes the multimers and prevents the assembly into amyloid fibrils. These oligomers affect the membrane integrity. The reduction of disulfide bonds leads to a rearrangement and redirects assembly of Aß amyloid fibrils. CONCLUSION: The toxic synthetic AßG37C mutant can assemble into an amyloid of unusual morphology through the formation of anti-parallel ß-sheets. This pathway involves the formation of oligomers resulting from the arrangement of Aß dimers linked by covalent di-sulfide link, being these oligomers harmful for the membranes. GENERAL SIGNIFICANCE: The capacity to produce large amount of stable oligomers without additional detergents or extrinsic cross-linkers allow further structural and biophysical studies to understand their capacity to assemble and disrupt the membranes, a key event in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid/metabolism , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Transmission/methods , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Folding , Scattering, Small Angle , Spectrometry, Fluorescence/methods , X-Ray Diffraction/methods
12.
Soft Matter ; 12(36): 7539-7550, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27714323

ABSTRACT

Soft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin ßCD-nC10 (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C10) chains on the secondary face of the ßCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition. The coexistence of small vesicular and nanosponge membrane objects with bigger nanoparticles with inner multicompartment cubic lattice structures was established as a typical feature of the employed dispersion process. The cryogenic transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) structural analyses revealed the dependence of the internal organization of the self-assembled nanoparticles on the presence of embedded ßCD-nC10 deep cavitands in the lipid bilayers. The obtained results indicated that the incorporated amphiphilic ßCD-nC10 building blocks stabilize the cubic lattice packing in the lipid membrane particles, which displayed structural features beyond the traditional CD nanosponges. UV-Vis spectroscopy was employed to characterize the nanoencapsulation of a model hydrophobic dimethylphenylazo-naphthol guest compound (Oil red) in the created nanocarriers. In perspective, these dual porosity carriers should be suitable for co-encapsulation and sustained delivery of peptide, protein or siRNA biopharmaceuticals together with small molecular weight drug compounds or imaging agents.

13.
Soft Matter ; 12(17): 4024-33, 2016 05 07.
Article in English | MEDLINE | ID: mdl-26997621

ABSTRACT

Positively charged layered double hydroxide particles composed of Mg(2+) and Al(3+) layer-forming cations and NO3(-) charge compensating anions (MgAl-NO3-LDH) were synthesized and the colloidal stability of their aqueous suspensions was investigated in the presence of inorganic anions of different charges. The formation of the layered structure was confirmed by X-ray diffraction, while the charging and aggregation properties were explored by electrophoresis and light scattering. The monovalent anions adsorb on the oppositely charged surface to a different extent according to their hydration state leading to the Cl(-) > NO3(-) > SCN(-) > HCO3(-) order in surface charge densities. The ions on the right side of the series induce the aggregation of MgAl-NO3-LDH particles at lower concentrations, whereas in the presence of the left ones, the suspensions are stable even at higher salt levels. The adsorption of multivalent anions gave rise to charge neutralization and charge reversal at appropriate concentrations. For some di, tri and tetravalent ions, charge reversal resulted in restabilization of the suspensions in the intermediate salt concentration regime. Stable samples were also observed at low salt levels. Particle aggregation was fast near the charge neutralization point and at high concentrations. These results, which evidence the colloidal stability of MgAl-NO3-LDH in the presence of various anions, are of prime fundamental interest. These are also critical for applications to develop stable suspensions of primary particles for water purification processes, with the aim of the removal of similar anions by ion exchange.

14.
Langmuir ; 31(46): 12609-17, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26528779

ABSTRACT

The colloidal behavior of layered double hydroxide nanoparticles containing Mg(2+) and Al(3+) ions as intralayer cations and nitrates as counterions (MgAl-NO3-LDH) was studied in the presence of a short statistical copolymer of acrylic acid (AA) and butyl acrylate (BA) terminated with 4-cyano-4-thiothiopropylsulfanyl pentanoic acid (CTPPA) (P(AA7.5-stat-BA7.5)-CTPPA) synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Surface charge properties and aggregation of the particles were investigated by electrophoresis and dynamic light scattering (DLS), respectively. The negatively charged P(AA7.5-stat-BA7.5)-CTPPA adsorbed strongly on the oppositely charged particles, leading to charge neutralization at the isoelectric point (IEP) and charge reversal at higher copolymer concentrations. The dispersions were unstable, i.e., fast aggregation of the MgAl-NO3-LDH occurred near the IEP while high stability was achieved at higher P(AA7.5-stat-BA7.5)-CTPPA concentrations. Atomic force (AFM) and transmission electron (TEM) microscopy imaging revealed that the platelets preferentially adopted a face-to-face orientation in the aggregates. While the stability of the bare particles was very sensitive to ionic strength, the P(AA7.5-stat-BA7.5)-CTPPA copolymer-coated particles were extremely stable even at high salt levels. Accordingly, the limited colloidal stability of bare MgAl-NO3-LDH dispersions was significantly improved by adding an appropriate amount of P(AA7.5-stat-BA7.5)-CTPPA to the suspension.


Subject(s)
Hydroxides/chemistry , Nanoparticles/chemistry , Polymerization , Polymers/chemistry , Acrylates/chemistry , Adsorption , Colloids , Models, Molecular , Molecular Conformation , Surface Properties
15.
Macromol Rapid Commun ; 36(8): 768-73, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25704443

ABSTRACT

Conjugation of a hydrophobic poly(2-oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter- and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.


Subject(s)
Amyloid/chemistry , DNA Adducts/chemical synthesis , DNA/chemistry , Oxazoles/chemistry , Polymerization , Amyloid/chemical synthesis , DNA Adducts/chemistry , Microscopy, Electron, Transmission , Nanoconjugates/chemistry , Nanotubes/chemistry , Oxazoles/chemical synthesis , Polymers/chemical synthesis , Polymers/chemistry
16.
Biomacromolecules ; 15(9): 3375-82, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25105945

ABSTRACT

We report herein on the polymer-crystallization-assisted thiol-ene photosynthesis of an amphiphilic comb/graft DNA copolymer, or molecular brush, composed of a hydrophobic poly(2-oxazoline) backbone and hydrophilic short single-stranded nucleic acid grafts. Coupling efficiencies are above 60% and thus higher as compared with the straight solid-phase-supported synthesis of amphiphilic DNA block copolymers. The DNA molecular brushes self-assemble into sub-micron-sized spherical structures in water as evidenced by light scattering as well as atomic force and electron microscopy imaging. The nucleotide sequences remain functional, as assessed by UV and fluorescence spectroscopy subsequent to isoindol synthesis at the surface of the structures. The determination of a vesicular morphology is supported by encapsulation and subsequent spectroscopy monitoring of the release of a water-soluble dye and spectroscopic quantification of the hybridization efficiency (30% in average) of the functional nucleic acid strands engaged in structure formation: about one-half of the nucleotide sequences are available for hybridization, whereas the other half are hindered within the self-assembled structure. Because speciation between complementary and non complementary sequences in the medium could be ascertained by confocal laser scanning microscopy, the stable self-assembled molecular brushes demonstrate the potential for sensing applications.


Subject(s)
DNA/chemistry , Nanospheres/chemistry , Oxazoles/chemistry , Biosensing Techniques/methods , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanospheres/ultrastructure
17.
Biomacromolecules ; 15(9): 3253-8, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25093956

ABSTRACT

The formation of extracellular neuritic plaques in the brain of individuals who suffered from Alzheimer's disease (AD) is a major pathological hallmark. These plaques consist of filamentous aggregates of the amyloid beta (1-42) (Aß42) proteins. Prevention or reduction of the formation of these fibrils is foreseen as a potential therapeutic approach. In this context, we investigated the interactions between the Aß42 protein and polyions, in particular short single stranded synthetic nucleotide sequences. The experimental outcomes reported herein provide evidence of the inhibition of amyloid fibril genesis as well as disassembly of existing fibers through electrostatic interaction between the Aß42 protein and the polyions. Since the polyions and the Aß42 protein are oppositely charged, the formation of (micellar) inter polyelectrolyte complexes (IPECs) is likely to occur. Since the abnormal deposition of amyloid fibers is an archetype of AD, the outcomes of these investigations, supported by atomic force microscopy imaging in the dry and liquid states, as well as circular dichroism and Fourier transform infrared spectroscopy, are of high interest for the development of future strategies to cure a disease that concerns an ever aging population.


Subject(s)
Amyloid beta-Peptides/chemistry , Oligonucleotides/chemistry , Peptide Fragments/chemistry , Protein Aggregation, Pathological , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Humans , Peptide Fragments/metabolism , Spectroscopy, Fourier Transform Infrared
18.
Chem Commun (Camb) ; 50(52): 6863-5, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24837840

ABSTRACT

The grafting of a short nucleic acid strand to ditryptophan dipeptide (WW) results in a peptide-DNA hybrid, which assembles into fibrils under controlled aggregation conditions as evidenced by label free optical sensing owing to the intrinsic fluorescence of the dipeptide.


Subject(s)
Biosensing Techniques , DNA/chemistry , Dipeptides/chemistry , Optical Imaging , Tryptophan/chemistry , DNA/analysis , Dipeptides/analysis , Fluorescence , Molecular Structure , Spectrometry, Fluorescence , Tryptophan/analysis
20.
Chem Commun (Camb) ; 48(44): 5440-2, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22534735

ABSTRACT

For the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release.


Subject(s)
Amyloid/chemistry , DNA/chemistry , Dipeptides/chemistry , Nanoconjugates/chemistry , Oligonucleotides/chemistry , Phenylalanine/analogs & derivatives , Acridine Orange , Fluorescent Dyes , Humans , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanoconjugates/ultrastructure , Particle Size , Phenylalanine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...