Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Front Bioinform ; 4: 1306244, 2024.
Article in English | MEDLINE | ID: mdl-38501111

ABSTRACT

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

3.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38213002

ABSTRACT

MOTIVATION: methyLImp, a method we recently introduced for the missing value estimation of DNA methylation data, has demonstrated competitive performance in data imputation compared to the existing, general-purpose, approaches. However, imputation running time was considerably long and unfeasible in case of large datasets with numerous missing values. RESULTS: methyLImp2 made possible computations that were previously unfeasible. We achieved this by introducing two important modifications that have significantly reduced the original running time without sacrificing prediction performance. First, we implemented a chromosome-wise parallel version of methyLImp. This parallelization reduced the runtime by several 10-fold in our experiments. Then, to handle large datasets, we also introduced a mini-batch approach that uses only a subset of the samples for the imputation. Thus, it further reduces the running time from days to hours or even minutes in large datasets. AVAILABILITY AND IMPLEMENTATION: The R package methyLImp2 is under review for Bioconductor. It is currently freely available on Github https://github.com/annaplaksienko/methyLImp2.


Subject(s)
Computational Biology , DNA Methylation
4.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1009-1019, 2023.
Article in English | MEDLINE | ID: mdl-35839194

ABSTRACT

Drug repurposing is a highly active research area, aiming at finding novel uses for drugs that have been previously developed for other therapeutic purposes. Despite the flourishing of methodologies, success is still partial, and different approaches offer, each, peculiar advantages. In this composite landscape, we present a novel methodology focusing on an efficient mathematical procedure based on gene similarity scores and biased random walks which rely on robust drug-gene-disease association data sets. The recommendation mechanism is further unveiled by means of the Markov chain underlying the random walk process, hence providing explainability about how findings are suggested. Performances evaluation and the analysis of a case study on rheumatoid arthritis show that our approach is accurate in providing useful recommendations and is computationally efficient, compared to the state of the art of drug repurposing approaches.


Subject(s)
Drug Repositioning , Drug Repositioning/methods , Mathematics , Markov Chains
5.
PLoS One ; 17(12): e0279632, 2022.
Article in English | MEDLINE | ID: mdl-36580470

ABSTRACT

BACKGROUND: The debilitating effects of noncommunicable diseases (NCDs) and the accompanying chronic inflammation represent a significant obstacle for the sustainability of our development, with efforts spreading worldwide to counteract the diffusion of NCDs, as per the United Nations Sustainable Development Goals (SDG 3). In fact, despite efforts of varied intensity in numerous directions (from innovations in biotechnology to lifestyle modifications), the incidence of NCDs remains pandemic. The present work wants to contribute to addressing this major concern, with a specific focus on the fragmentation of medical approaches, via an interdisciplinary analysis of the medical discourse, i.e. the heterogenous reporting that biomedical scientific literature uses to describe the anti-inflammatory therapeutic landscape in NCDs. The aim is to better capture the roots of this compartmentalization and the power relations existing among three segregated pharmacological, experimental and unstandardized biomedical approaches to ultimately empower collaboration beyond medical specialties and possibly tap into a more ample and effective reservoir of integrated therapeutic opportunities. METHOD: Using rheumatoid arthritis (RA) as an exemplar disease, twenty-eight articles were manually translated into a nine-dimensional categorical variable of medical socio-anthropological relevance, relating in particular (but not only) to legitimacy, temporality and spatialization. This digitalized picture (9 x 28 table) of the medical discourse was further analyzed by simple automated learning approaches to identify differences and highlight commonalities among the biomedical categories. RESULTS: Interpretation of these results provides original insights, including suggestions to: empower scientific communication between unstandardized approaches and basic biology; promote the repurposing of non-pharmacological therapies to enhance robustness of experimental approaches; and align the spatial representation of diseases and therapies in pharmacology to effectively embrace the systemic approach promoted by modern personalized and preventive medicines. We hope this original work can expand and foster interdisciplinarity among public health stakeholders, ultimately contributing to the achievement of SDG3.


Subject(s)
Arthritis, Rheumatoid , Public Health , Humans , Sustainable Development , United Nations , Arthritis, Rheumatoid/therapy
7.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35794713

ABSTRACT

In recent years there has been a widespread interest in researching biomarkers of aging that could predict physiological vulnerability better than chronological age. Aging, in fact, is one of the most relevant risk factors for a wide range of maladies, and molecular surrogates of this phenotype could enable better patients stratification. Among the most promising of such biomarkers is DNA methylation-based biological age. Given the potential and variety of computational implementations (epigenetic clocks), we here present a systematic review of such clocks. Furthermore, we provide a large-scale performance comparison across different tissues and diseases in terms of age prediction accuracy and age acceleration, a measure of deviance from physiology. Our analysis offers both a state-of-the-art overview of the computational techniques developed so far and a heterogeneous picture of performances, which can be helpful in orienting future research.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Biomarkers , Epigenomics/methods
8.
Sci Rep ; 12(1): 1330, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079043

ABSTRACT

Advanced age represents one of the major risk factors for Parkinson's Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson's Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson's Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson's Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson's Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson's Disease patients, and healthy siblings of Parkinson's Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson's Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson's Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson's Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson's Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson's Disease.


Subject(s)
Aging/metabolism , MicroRNAs/blood , Parkinson Disease/metabolism , Aged , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged
9.
Nucleic Acids Res ; 49(W1): W199-W206, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34038548

ABSTRACT

Methylage is an epigenetic marker of biological age that exploits the correlation between the methylation state of specific CG dinucleotides (CpGs) and chronological age (in years), gestational age (in weeks), cellular age (in cell cycles or as telomere length, in kilobases). Using DNA methylation data, methylage is measurable via the so called epigenetic clocks. Importantly, alterations of the correlation between methylage and age (age acceleration or deceleration) have been stably associated with pathological states and occur long before clinical signs of diseases become overt, making epigenetic clocks a potentially disruptive tool in preventive, diagnostic and also in forensic applications. Nevertheless, methylage dependency from CpGs selection, mathematical modelling, tissue specificity and age range, still makes the potential of this biomarker limited. In order to enhance model comparisons, interchange, availability, robustness and standardization, we organized a selected set of clocks within a hub webservice, EstimAge (Estimate of methylation Age, http://estimage.iac.rm.cnr.it), which intuitively and informatively enables quick identification, computation and comparison of available clocks, with the support of standard statistics.


Subject(s)
DNA Methylation , Software , CpG Islands , Epigenesis, Genetic , Internet , Time Factors
10.
Per Med ; 18(3): 283-294, 2021 05.
Article in English | MEDLINE | ID: mdl-33825526

ABSTRACT

Personalized medicine (PM) moves at the same pace of data and technology and calls for important changes in healthcare. New players are participating, providing impulse to PM. We review the conceptual foundations for PM and personalized healthcare and their evolution through scientific publications where a clear definition and the features of the different formulations are identifiable. We then examined PM policy documents of the International Consortium for Personalised Medicine and related initiatives to understand how PM stakeholders have been changing. Regional authorities and stakeholders have joined the race to deliver personalized care and are driving toward what could be termed as the next personalized healthcare. Their role as a key stakeholder in PM is expected to be pivotal.


Subject(s)
Big Data , Biomedical Research/organization & administration , Health Services Research/organization & administration , Precision Medicine/methods , Europe , Humans , Interdisciplinary Research/organization & administration , Local Government , Patient-Centered Care/organization & administration
11.
Mech Ageing Dev ; 194: 111426, 2021 03.
Article in English | MEDLINE | ID: mdl-33385396

ABSTRACT

Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development.


Subject(s)
Aging/metabolism , Biomedical Research , Brain/metabolism , Geriatrics , Inflammation Mediators/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Age Factors , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , Brain/pathology , Brain/physiopathology , Case-Control Studies , Europe , Female , Genomics , Humans , Male , Metabolomics , Motor Activity , Nerve Degeneration , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Research Design , Signal Transduction , Twin Studies as Topic
12.
BMC Bioinformatics ; 21(1): 268, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600298

ABSTRACT

BACKGROUND: High-throughput technologies enable the cost-effective collection and analysis of DNA methylation data throughout the human genome. This naturally entails missing values management that can complicate the analysis of the data. Several general and specific imputation methods are suitable for DNA methylation data. However, there are no detailed studies of their performances under different missing data mechanisms -(completely) at random or not- and different representations of DNA methylation levels (ß and M-value). RESULTS: We make an extensive analysis of the imputation performances of seven imputation methods on simulated missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR) methylation data. We further consider imputation performances on the popular ß- and M-value representations of methylation levels. Overall, ß-values enable better imputation performances than M-values. Imputation accuracy is lower for mid-range ß-values, while it is generally more accurate for values at the extremes of the ß-value range. The MAR values distribution is on the average more dense in the mid-range in comparison to the expected ß-value distribution. As a consequence, MAR values are on average harder to impute. CONCLUSIONS: The results of the analysis provide guidelines for the most suitable imputation approaches for DNA methylation data under different representations of DNA methylation levels and different missing data mechanisms.


Subject(s)
DNA Methylation , Data Collection , Epigenomics/methods , Humans
13.
PLoS One ; 15(3): e0229763, 2020.
Article in English | MEDLINE | ID: mdl-32155174

ABSTRACT

INTRODUCTION: Meta-analysis is a powerful means for leveraging the hundreds of experiments being run worldwide into more statistically powerful analyses. This is also true for the analysis of omic data, including genome-wide DNA methylation. In particular, thousands of DNA methylation profiles generated using the Illumina 450k are stored in the publicly accessible Gene Expression Omnibus (GEO) repository. Often, however, the intensity values produced by the BeadChip (raw data) are not deposited, therefore only pre-processed values -obtained after computational manipulation- are available. Pre-processing is possibly different among studies and may then affect meta-analysis by introducing non-biological sources of variability. MATERIAL AND METHODS: To systematically investigate the effect of pre-processing on meta-analysis, we analysed four different collections of DNA methylation samples (datasets), each composed of two subsets, for which raw data from controls (i.e. healthy subjects) and cases (i.e. patients) are available. We pre-processed the data from each dataset with nine among the most common pipelines found in literature. Moreover, we evaluated the performance of regRCPqn, a modification of the RCP algorithm that aims to improve data consistency. For each combination of pre-processing (9 × 9), we first evaluated the between-sample variability among control subjects and, then, we identified genomic positions that are differentially methylated between cases and controls (differential analysis). RESULTS AND CONCLUSION: The pre-processing of DNA methylation data affects both the between-sample variability and the loci identified as differentially methylated, and the effects of pre-processing are strongly dataset-dependent. By contrast, application of our renormalization algorithm regRCPqn: (i) reduces variability and (ii) increases agreement between meta-analysed datasets, both critical components of data harmonization.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing/standards , Meta-Analysis as Topic , Sequence Analysis, DNA/standards , Animals , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods , Software/standards
14.
EPMA J ; 11(1): 1-16, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140182

ABSTRACT

BACKGROUND AND LIMITATIONS: Impaired wound healing (WH) and chronic inflammation are hallmarks of non-communicable diseases (NCDs). However, despite WH being a recognized player in NCDs, mainstream therapies focus on (un)targeted damping of the inflammatory response, leaving WH largely unaddressed, owing to three main factors. The first is the complexity of the pathway that links inflammation and wound healing; the second is the dual nature, local and systemic, of WH; and the third is the limited acknowledgement of genetic and contingent causes that disrupt physiologic progression of WH. PROPOSED APPROACH: Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), we integrate and revisit current literature to offer a novel systemic view on the cues that can impact on the fate (acute or chronic inflammation) of WH, beyond the compartmentalization of medical disciplines and with the support of advanced computational biology. CONCLUSIONS: This shall open to a broader understanding of the causes for WH going awry, offering new operational criteria for patients' stratification (prediction and personalization). While this may also offer improved options for targeted prevention, we will envisage new therapeutic strategies to reboot and/or boost WH, to enable its progression across its physiological phases, the first of which is a transient acute inflammatory response versus the chronic low-grade inflammation characteristic of NCDs.

15.
Biomolecules ; 9(4)2019 04 09.
Article in English | MEDLINE | ID: mdl-30970641

ABSTRACT

Chronic inflammatory autoimmune disorders are systemic diseases with increasing incidence and still lack a cure. More recently, attention has been placed in understanding gastrointestinal (GI) dysbiosis and, although important progress has been made in this area, it is currently unclear to what extent microbiome manipulation can be used in the treatment of autoimmune disorders. Via the use of appropriate models, rheumatoid arthritis (RA), a well-known exemplar of such pathologies, can be exploited to shed light on the currently overlooked effects of existing therapies on the GI microbiome. In this direction, we here explore the crosstalk between the GI microbiome and the host immunity in model arthritis (collagen induced arthritis, CIA). By exploiting omics from samples of limited invasiveness (blood and stools), we assess the host-microbiome responses to standard therapy (methotrexate, MTX) combined with mechanical subcutaneous stimulation (MS) and to mechanical stimulation alone. When MS is involved, results reveal the sphingolipid metabolism as the trait d'union among known hallmarks of (model) RA, namely: Imbalance in the S1P-S1PR1 axis, expansion of Prevotellasp., and invariant Natural Killer T (iNKT)-penia, thus offering the base of a rationale to mechanically modulate this pathway as a therapeutic target in RA.


Subject(s)
Arthritis, Experimental/microbiology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Sphingolipids/metabolism , Animals , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Female , Killer Cells, Natural/immunology , Methotrexate/therapeutic use , Prevotella/pathogenicity , Rats , Rats, Wistar , Stress, Mechanical
16.
Bioinformatics ; 35(19): 3786-3793, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30796811

ABSTRACT

MOTIVATION: DNA methylation is a stable epigenetic mark with major implications in both physiological (development, aging) and pathological conditions (cancers and numerous diseases). Recent research involving methylation focuses on the development of molecular age estimation methods based on DNA methylation levels (mAge). An increasing number of studies indicate that divergences between mAge and chronological age may be associated to age-related diseases. Current advances in high-throughput technologies have allowed the characterization of DNA methylation levels throughout the human genome. However, experimental methylation profiles often contain multiple missing values that can affect the analysis of the data and also mAge estimation. Although several imputation methods exist, a major deficiency lies in the inability to cope with large datasets, such as DNA methylation chips. Specific methods for imputing missing methylation data are therefore needed. RESULTS: We present a simple and computationally efficient imputation method, metyhLImp, based on linear regression. The rationale of the approach lies in the observation that methylation levels show a high degree of inter-sample correlation. We performed a comparative study of our approach with other imputation methods on DNA methylation data of healthy and disease samples from different tissues. Performances have been assessed both in terms of imputation accuracy and in terms of the impact imputed values have on mAge estimation. In comparison to existing methods, our linear regression model proves to perform equally or better and with good computational efficiency. The results of our analysis provide recommendations for accurate estimation of missing methylation values. AVAILABILITY AND IMPLEMENTATION: The R-package methyLImp is freely available at https://github.com/pdilena/methyLImp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , Epigenomics , Humans , Linear Models , Oligonucleotide Array Sequence Analysis , Research Design
17.
J Gerontol A Biol Sci Med Sci ; 74(1): 1-8, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29554203

ABSTRACT

The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8,823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria, we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally, we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt-signaling pathways in the aging of human liver.


Subject(s)
Aging/metabolism , Epigenesis, Genetic , Liver Transplantation , Liver/metabolism , RNA/genetics , Transcriptome/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , DNA Methylation , Female , Humans , Liver/cytology , Male , Middle Aged , Tissue Donors , Young Adult
18.
Semin Immunol ; 40: 83-94, 2018 12.
Article in English | MEDLINE | ID: mdl-30501873

ABSTRACT

The unprecedented increase of life expectancy challenges society to protect the elderly from morbidity and mortality making vaccination a crucial mean to safeguard this population. Indeed, infectious diseases, such as influenza and pneumonia, are among the top killers of elderly people in the world. Elderly individuals are more prone to severe infections and less responsive to vaccination prevention, due to immunosenescence combined with the progressive increase of a proinflammatory status characteristic of the aging process (inflammaging). These factors are responsible for most age-related diseases and correlate with poor response to vaccination. Therefore, it is of utmost interest to deepen the knowledge regarding the role of inflammaging in vaccination responsiveness to support the development of effective vaccination strategies designed for elderly. In this review we analyse the impact of age-associated factors such as inflammaging, immunosenescence and immunobiography on immune response to vaccination in the elderly, and we consider systems biology approaches as a mean for integrating a multitude of data in order to rationally design vaccination approaches specifically tailored for the elderly.


Subject(s)
Aging/immunology , Inflammation , Vaccination , Aged , Animals , Datasets as Topic , Humans , Immunosenescence , Precision Medicine , Systems Biology
19.
Semin Immunol ; 40: 49-60, 2018 12.
Article in English | MEDLINE | ID: mdl-30396810

ABSTRACT

A growing amount of evidences indicates that inflammaging - the chronic, low grade inflammation state characteristic of the elderly - is the result of genetic as well as environmental or stochastic factors. Some of these, such as the accumulation of senescent cells that are persistent during aging or accompany its progression, seem to be sufficient to initiate the aging process and to fuel it. Others, like exposure to environmental compounds or infections, are temporary and resolve within a (relatively) short time. In both cases, however, a cellular memory of the event can be established by means of epigenetic modulation of the genome. In this review we will specifically discuss the relationship between epigenetics and inflammaging. In particular, we will show how age-associated epigenetic modifications concerned with heterochromatin loss and gene-specific remodelling, can promote inflammaging. Furthermore, we will recall how the exposure to specific nutritional, environmental and microbial stimuli can affect the rate of inflammaging through epigenetic mechanisms, touching also on the recent insight given by the concept of trained immunity.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Inflammation/genetics , Adaptive Immunity , Animals , Chromatin Assembly and Disassembly , Gene-Environment Interaction , Genetic Loci , Heterochromatin/metabolism , Humans
20.
Mol Biosyst ; 13(10): 2083-2091, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28809429

ABSTRACT

Under the current deluge of omics, module networks distinctively emerge as methods capable of not only identifying inherently coherent groups (modules), thus reducing dimensionality, but also hypothesizing cause-effect relationships between modules and their regulators. Module networks were first designed in the transcriptomic era and further exploited in the multi-omic context to assess (for example) miRNA regulation of gene expression. Despite a number of available implementations, expansion of module networks to other omics is constrained by a limited characterization of the solutions' (modules plus regulators) accuracy and stability - an immediate need for the better characterization of molecular biology complexity in silico. We hence carefully assessed for LemonTree - a popular and open source module network implementation - the dependency of the software performances (sensitivity, specificity, false discovery rate, solutions' stability) on the input parameters and on the data quality (sample size, expression noise) based on synthetic and real data. In the process, we uncovered and fixed an issue in the code for the regulator assignment procedure. We concluded this evaluation with a table of recommended parameter settings. Finally, we applied these recommended settings to gut-intestinal metagenomic data from rheumatoid arthritis patients, to characterize the evolution of the gut-intestinal microbiome under different pharmaceutical regimens (methotrexate and prednisone) and we inferred innovative clinical recommendations with therapeutic potential, based on the computed module network.


Subject(s)
Computational Biology/methods , Metagenomics/methods , Algorithms , Gene Expression Profiling , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...