Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Discov Today Dis Mech ; 10(3-4): e79-e82, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24489580

ABSTRACT

Cathelicidin antimicrobial peptide is an important mediator of the innate immune response. In addition to its potent antimicrobial activity, cathelicidin has been shown to have chemoattractant and angiogenic properties. Recent research has demonstrated that, in addition to its aforementioned functions, cathelicidin plays an important role in the complex pathogenesis of several chronic inflammatory skin diseases. This review will present a concise overview of the role of cathelicidin in infection and in the development of atopic dermatitis, psoriasis, and rosacea. This understanding will direct future research efforts to identify therapeutic approaches that use cathelicidin as a novel drug itself, or aim to modify its expression and regulation.

2.
J Biol Chem ; 282(25): 18265-18275, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17400552

ABSTRACT

Inflammation under sterile conditions is not well understood despite its importance in trauma and autoimmune disease. To investigate this process we established mouse models of sterile injury and explored the role of hyaluronan in mediating inflammation following injury. The response of cultured monocytes to hyaluronan was different than the response to lipopolysaccharide (LPS) despite both being dependent on Toll-like receptor 4 (TLR4). Cultured cells exposed to hyaluronan showed a pattern of gene induction that mimics the response seen in mouse skin after sterile injury with an increase in molecules such as transforming growth factor-beta2 and matrix metalloproteinase-13. These factors were not induced by LPS despite the mutual dependence of both hyaluronan and LPS on TLR4. Explanation for the unique response to hyaluronan was provided by observations that a lack of TLR4 or CD44 in mice diminished the response to sterile injury, and together with MD-2, was required for responsiveness to hyaluronan in vitro. Thus, a unique complex of TLR4, MD-2, and CD44 recognizes hyaluronan. Immunoprecipitation experiments confirmed the physical association of TLR4 and CD44. Taken together, our results define a previously unknown mechanism for initiation of sterile inflammation that involves recognition of released hyaluronan fragments as an endogenous signal of tissue injury.


Subject(s)
Hyaluronan Receptors/physiology , Hyaluronic Acid/chemistry , Lymphocyte Antigen 96/physiology , Toll-Like Receptor 4/metabolism , Wound Healing , Animals , Humans , Lipopolysaccharides/metabolism , Macrophages/metabolism , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Protein Binding , Skin/metabolism
3.
J Invest Dermatol ; 120(4): 662-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12648232

ABSTRACT

Ultraviolet irradiation is a major environmental cause of skin cancers, whereas ultraviolet-induced DNA repair and apoptosis are defense mechanisms that rescue and/or protect keratinocytes from this risk. Multiple pathways are involved in ultraviolet-induced keratinocyte apoptosis, including activation of p38-mitogen-activated protein kinase, protein kinase C, and CD95, each of which are associated with caspase activation. Alternatively, ceramides could serve as ultraviolet-induced, second messenger lipids, because they induce cell cycle arrest and apoptosis in a variety of cell types, including keratinocytes. We investigated the role of ceramide versus caspase, and the responsible pathway for ceramide generation in ultraviolet B-induced apoptosis of cultured normal human keratinocytes maintained in low calcium (0.07 mm) medium. Ultraviolet B (40 mJ per cm2) significantly inhibited cultured normal human keratinocyte proliferation, assessed as [3H-methyl]thymidine-thymidine incorporation into DNA, 2 h after irradiation. Terminal nick deoxynucleotide end-labeling-positive apoptotic cells (14.8% at 24 h and 34.4% at 48 h) and trypan blue-positive apoptotic cells (8.4% at 24 h and 28.6% at 48 h) became evident in a time-dependent manner after ultraviolet B irradiation, in parallel with activation of caspase-3. The ceramide content of irradiated cultured normal human keratinocytes increased significantly by 8 h, whereas glucosylceramide only modestly increased, and sphingomyelin content remained unaltered. Metabolic studies with radiolabeled serine, palmitic acid, and phosphorylcholine revealed that the ultraviolet B-induced increase in ceramide results primarily from increased de novo synthesis rather than accelerated sphingomyelin hydrolysis. Increased ceramide synthesis, in turn, could be attributed to increased activity of ceramide synthase (i.e., 1.7-fold increase 8 h after ultraviolet B irradiation), whereas serine palmitoyltransferase activity did not change. Both fumonisin B1, an inhibitor of ceramide synthase, and ISP-1, myriocin an inhibitor of serine palmitoyltransferase, significantly attenuated the ultraviolet B-induced apoptosis in a caspase-3-independent fashion, whereas co-incubation with a caspase-3 inhibitor (Ac-DEVD-chloromethyl-ketone) further attenuated the ultraviolet B-induced apoptosis. Thus, increased de novo ceramide synthesis signals ultraviolet B-induced apoptosis, by a pathway independent of, but in concert with, caspase-3 activation.


Subject(s)
Apoptosis/physiology , Ceramides/biosynthesis , Keratinocytes/cytology , Keratinocytes/radiation effects , Apoptosis/radiation effects , Caspase 3 , Caspases/metabolism , Cell Differentiation , Cells, Cultured , DNA/biosynthesis , Enzyme Inhibitors/pharmacology , Fumonisins/pharmacology , Humans , Keratinocytes/metabolism , Oxidoreductases/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL