Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
SN Comput Sci ; 4(4): 402, 2023.
Article in English | MEDLINE | ID: mdl-37214587

ABSTRACT

Grammar is a key input in grammar-based genetic programming. Grammar design not only influences performance, but also program size. However, grammar design and the choice of productions often require expert input as no automatic approach exists. This research work discusses our approach to automatically reduce a bloated grammar. By utilizing a simple Production Ranking mechanism, we identify productions which are less useful and dynamically prune those to channel evolutionary search towards better (smaller) solutions. Our objective in this work was program size reduction without compromising generalization performance. We tested our approach on 13 standard symbolic regression datasets with Grammatical Evolution. Using a grammar embodying a well-defined function set as a baseline, we compare effective genome length and test performance with our approach. Dynamic grammar pruning achieved significantly better genome lengths for all datasets, while significantly improving generalization performance on three datasets, although it worsened in five datasets. When we utilized linear scaling during the production ranking stages (the first 20 generations) the results dramatically improved. Not only were the programs smaller in all datasets, but generalization scores were also significantly better than the baseline in 6 out of 13 datasets, and comparable in the rest. When the baseline was also linearly scaled as well, the program size was still smaller with the Production Ranking approach, while generalization scores dropped in only three datasets without any significant compromise in the rest.

2.
SN Comput Sci ; 3(6): 426, 2022.
Article in English | MEDLINE | ID: mdl-35950192

ABSTRACT

A novel approach to induce Fuzzy Pattern Trees using Grammatical Evolution is presented in this paper. This new method, called Fuzzy Grammatical Evolution, is applied to a set of benchmark classification problems. Experimental results show that Fuzzy Grammatical Evolution attains similar and oftentimes better results when compared with state-of-the-art Fuzzy Pattern Tree composing methods, namely Fuzzy Pattern Trees evolved using Cartesian Genetic Programming, on a set of benchmark problems. We show that, although Cartesian Genetic Programming produces smaller trees, Fuzzy Grammatical Evolution produces better performing trees. Fuzzy Grammatical Evolution also benefits from a reduction in the number of necessary user-selectable parameters, while Cartesian Genetic Programming requires the selection of three crucial graph parameters before each experiment. To address the issue of bloat, an additional version of Fuzzy Grammatical Evolution using parsimony pressure was tested. The experimental results show that Fuzzy Grammatical Evolution with this extension routinely finds smaller trees than those using Cartesian Genetic Programming without any compromise in performance. To improve the performance of Fuzzy Grammatical Evolution, various ensemble methods were investigated. Boosting was seen to find the best individuals on half the benchmarks investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...