Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(5): 3174-3182, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31967152

ABSTRACT

Scanning nanoscale superconducting quantum interference devices (nanoSQUIDs) are of growing interest for highly sensitive quantitative imaging of magnetic, spintronic, and transport properties of low-dimensional systems. Utilizing specifically designed grooved quartz capillaries pulled into a sharp pipette, we have fabricated the smallest SQUID-on-tip (SOT) devices with effective diameters down to 39 nm. Integration of a resistive shunt in close proximity to the pipette apex combined with self-aligned deposition of In and Sn, has resulted in SOTs with a flux noise of 42 nΦ0 Hz-1/2, yielding a record low spin noise of 0.29 µB Hz-1/2. In addition, the new SOTs function at sub-Kelvin temperatures and in high magnetic fields of over 2.5 T. Integrating the SOTs into a scanning probe microscope allowed us to image the stray field of a single Fe3O4 nanocube at 300 mK. Our results show that the easy magnetization axis direction undergoes a transition from the 〈111〉 direction at room temperature to an in-plane orientation, which could be attributed to the Verwey phase transition in Fe3O4.

2.
Nature ; 539(7629): 407-410, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27786173

ABSTRACT

Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices-below 1 µK Hz-1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

3.
Nat Commun ; 7: 12566, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558907

ABSTRACT

Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.

4.
Sci Adv ; 1(10): e1500740, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26601138

ABSTRACT

Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano-superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)2Te3 thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.

5.
Phys Rev Lett ; 110(25): 256403, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829750

ABSTRACT

We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity, and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.

6.
J Phys Condens Matter ; 23(5): 055601, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21406911

ABSTRACT

Rh(17)S(15) has recently been shown to be a strongly correlated superconductor with a transition temperature of 5.4 K. In order to understand the nature of the strong correlations we study the effect of replacement of some of the Rh and S atoms by other elements such as Fe, Pd, Ir and Ni on the Rh side and Se on the S side in this work. We find that while replacements of Ir and Se lower the transition temperature considerably, those of Fe, Pd and Ni destroy the superconductivity down to 1.5 K. The resistivity data for these doped samples show a minimum which is presumably disorder induced. A reduction of T(c) is always accompanied by a reduction of electron correlations, as deduced from heat capacity and magnetization data. Interestingly, the Fe doped sample shows evidence of spin glass formation at low temperatures.

7.
Phys Rev Lett ; 100(2): 026404, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232894

ABSTRACT

In this Letter, we report resistivity, susceptibility, heat capacity, and upper critical field studies on a polycrystalline Rh17S15 sample which exhibits superconductivity below 5.4 K. Detailed studies suggest that the superconductivity in this compound arises from strongly correlated charge carriers presumably due to the high density of states of Rh d bands at the Fermi level. Moreover, the Hall coefficient shows a sign change and increases at low temperature before the sample becomes a superconductor below 5.4 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...