Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38847264

ABSTRACT

BACKGROUND: Estrogen alpha has been recognized as a perilous factor in breast cancer cell proliferation and has been proficiently treated in breast cancer chemotherapy with the development of selective estrogen receptor modulators (SERMs). OBJECTIVES: The major aim of this study was to identify the potential inhibitors against the most influential target ERα receptor by in silico studies of 115 phytochemicals from 17 medicinal plants using in silico molecular docking studies. METHODS: The molecular docking investigation was carried out by a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed using molecular dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. The ADME( T) studies were performed by SWISS ADME and ProTox-II. RESULTS: The top ten highest binding energy phytochemicals identified were amyrin acetate (- 10.7 kcal/mol), uscharine (-10.5 kcal/mol), voruscharin (-10.0 kcal/mol), cyclitols (-10.0 kcal/mol), taraxeryl acetate (-9.9 kcal/mol), amyrin (-9.9 kcal/mol), barringtogenol C (-9.9 kcal/mol), calactin (-9.9 kcal/mol), 3-beta taraxerol (-9.8 kcal/mol), and calotoxin (-9.8 kcal/mol). A molecular docking study revealed that these phytochemical constituents showed higher binding affinity compared to the reference standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. The results of MD studies showed that all four tested compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen- ERα complex. CONCLUSION: Among the ten compounds, phytochemical amyrin acetate (triterpenoids) formed a more stable complex as well as exhibited greater binding affinity than standard tamoxifen. ADMET studies for the top ten phytochemicals showed a good safety profile. Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for the treatment of breast cancer by adopting the concept of drug repurposing. Hence, these phytochemicals can be further studied and can be used as a parent core molecule to develop novel lead molecules for breast cancer therapy.

2.
Curr Pharm Des ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698754

ABSTRACT

OBJECTIVE: The peculiar aim of this study is to discover and identify the most effective and potential inhibitors against the most influential target ERα receptor by in silico studies of 45 phytochemicals from six diverse ayurvedic medicinal plants. METHODS: The molecular docking investigation was carried out by the genetic algorithm program of AutoDock Vina. The molecular dynamic (MD) simulation investigations were conducted using the Desmond tool of Schrödinger molecular modelling. This study identified the top ten highest binding energy phytochemicals that were taken for drug-likeness test and ADMET profile prediction with the help of the web-based server QikpropADME. RESULTS: Molecular docking study revealed that ellagic acid (-9.3 kcal/mol), emodin (-9.1 kcal/mol), rhein (-9.1 kcal/mol), andquercetin (-9.0 kcal/mol) phytochemicals showed similar binding affinity as standard tamoxifen towards the target protein ERα. MD studies showed that all four compounds possess comparatively stable ligand-protein complexes with ERα target compared to the tamoxifen-ERα complex. Among the four compounds, phytochemical rhein formed a more stable complex than standard tamoxifen. ADMET studies for the top ten highest binding energy phytochemicals showed a better safety profile. CONCLUSION: Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for treating breast cancer, according to the notion of drug repurposing. Hence, these phytochemicals can be further studied and used as a parent core molecule to develop innovative lead molecules for breast cancer therapy.

3.
Drug Res (Stuttg) ; 70(8): 348-355, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32559773

ABSTRACT

In the present study, we have placed the substituted thiosemicarbazide moiety at the C-2 position and 3-nitrophenyl group at N-3 position of benzopyrimidines and studied their antitubercular, anti-HIV and antibacterial activities against selected gram positive and negative bacteria. The target compounds 1-substituted-3-(3-(3-nitrophenyl)-4-oxo-3,4-dihydrobenzopyrimidin-2-ylamino) isothioureas (PTS1 - PTS15: ) were obtained by the reaction of 2-hydrazino-3-(3-nitrophenyl) benzopyrimidin-4(3 H)-one (5: ) with different alkyl/aryl isothiocyanates followed by methylation with dimethyl sulphate. All synthesized compounds were screened for their antitubercular, anti-HIV and antibacterial activity against selective gram positive and gram negative bacteria by agar dilution method. Among the series, compound 2-methyl-3-(3-(3-nitrophenyl)-4-oxo-3,4-dihydrobenzopyrimidin-2-ylamino)-1-(3-chlorophenyl)isothiourea (PTS14): shown most potent activity against Klebsiella pneumoniae, Proteus vulgaris and Staphylococcus aureus; PTS14: exhibited the antitubercular activity at the minimum microgram of 1.56 µg/mL and anti-HIV activity at 0.96 µg/mL against HIV1 and HIV2 and offers potential for further optimization and development to new antitubercular and anti-HIV agents. The results obtained from this study confirm that the synthesized and biologically evaluated benzopyrimidines showed promising antimicrobial, antitubercular and anti-HIV activities and are new scaffolds for antimicrobial activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Semicarbazides/chemical synthesis , Semicarbazides/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Cell Line , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...