Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338508

ABSTRACT

The EU's regulatory framework for genetically modified organisms (GMOs) was developed for "classical" transgenic GMOs, yet advancements in so-called "new genomic techniques (NGTs)" have led to implementation challenges regarding detection and identification. As traceability can complement detection and identification strategies, improvements to the existing traceability strategy for GMOs are investigated in this study. Our results are based on a comprehensive analysis of existing traceability systems for globally traded agricultural products, with a focus on soy. Alternative traceability strategies in other sectors were also analysed. One focus was on traceability strategies for products with characteristics for which there are no analytical verification methods. Examples include imports of "conflict minerals" into the EU. The so-called EU Conflict Minerals Regulation requires importers of certain raw materials to carry out due diligence in the supply chain. Due diligence regulations, such as the EU's Conflict Minerals Regulation, can legally oblige companies to take responsibility for certain risks in their supply chains. They can also require the importer to prove the regional origin of imported goods. The insights from those alternative traceability systems are transferred to products that might contain GMOs. When applied to the issue of GMOs, we propose reversing the burden of proof: All companies importing agricultural commodities must endeavour to identify risks of unauthorised GMOs (including NGTs) in their supply chain and, where appropriate, take measures to minimise the risk to raw material imports. The publication concludes that traceability is a means to an end and serves as a prerequisite for due diligence in order to minimise the risk of GMO contamination in supply chains. The exemplary transfer of due diligence to a company in the food industry illustrates the potential benefits of mandatory due diligence, particularly for stakeholders actively managing non-GMO supply chains.

2.
Eukaryot Cell ; 7(4): 656-63, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18296621

ABSTRACT

In Aspergillus nidulans, proline can be used as a carbon and nitrogen source, and its metabolism requires the integration of three signals, including proline induction and nitrogen and carbon metabolite derepression. We have previously shown that the bidirectional promoter in the prnD-prnB intergenic region undergoes drastic chromatin rearrangements such that proline induction leads to the loss of positioned nucleosomes, whereas simultaneous carbon and nitrogen metabolite repression results in the partial repositioning of these nucleosomes. In the proline cluster, the inhibition of deacetylases by trichostatin A leads to partial derepression and is associated with a lack of nucleosome positioning. Here, we investigate the effect of histone acetylation in the proline cluster using strains deleted of essential components of putative A. nidulans histone acetyltransferase complexes, namely, gcnE and adaB, the orthologues of the Saccharomyces cerevisiae GCN5 and ADA2 genes, respectively. Surprisingly, GcnE and AdaB are not required for transcriptional activation and chromatin remodeling but are required for the repression of prnB and prnD and for the repositioning of nucleosomes in the divergent promoter region. Chromatin immunoprecipitation directed against histone H3 lysines K9 and K14 revealed that GcnE and AdaB participate in increasing the acetylation level of at least one nucleosome in the prnD-prnB intergenic region during activation, but these activities do not determine nucleosome positioning. Our results are consistent with a function of GcnE and AdaB in gene repression of the proline cluster, probably an indirect effect related to the function of CreA, the DNA-binding protein mediating carbon catabolite repression in A. nidulans.


Subject(s)
Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Histones/metabolism , Nucleosomes/metabolism , Promoter Regions, Genetic , Acetylation , Chromatin/metabolism , Gene Deletion , Histone Acetyltransferases/genetics , Transcription Factors/genetics
3.
Mol Microbiol ; 62(2): 509-19, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17020584

ABSTRACT

A good model for gene regulation, requiring the organism to monitor a complex and changing environment and respond in a precise and rapid way, is nitrogen metabolism in Aspergillus nidulans. This involves co-ordinated expression of hundreds of genes, many dependent on the transcription factor AreA, which monitors the nitrogen state of the cell. AreA activity is in part modulated by differential degradation of its transcript in response to intracellular glutamine. Here we report that glutamine triggers synchronized degradation of a large subset of transcripts involved in nitrogen metabolism. Among these are all four genes involved in the assimilation of nitrate. Significantly, we show that two of these transcripts, niaD and niiA, are stabilized by intracellular nitrate, directly reinforcing transcriptional regulation. Glutamine-signalled degradation and the nitrate-dependent stabilization of the niaD transcript are effected at the level of deadenylation and are dependent on its 3' UTR. When glutamine and nitrate are both present, nitrate stabilization is predominant, ensuring that nitrate and the toxic intermediate nitrite are removed from the cell. Regulated transcript stability is therefore an integral part of the adaptive response. This represents the first example of distinct physiological signals competing to differentially regulate transcripts at the level of deadenylation.


Subject(s)
Aspergillus nidulans/genetics , Gene Expression Regulation, Fungal/genetics , Glutamine/metabolism , Nitrates/metabolism , 3' Untranslated Regions/genetics , 3' Untranslated Regions/metabolism , Aspergillus nidulans/metabolism , Blotting, Northern , Gene Expression Regulation, Fungal/drug effects , Genes, Fungal/genetics , Glutamine/pharmacology , Nitrates/pharmacology , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , RNA Stability/drug effects , Ribonuclease H/genetics , Ribonuclease H/metabolism , Signal Transduction
4.
Mol Microbiol ; 59(2): 433-46, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16390440

ABSTRACT

The GATA factor AreA is a wide-domain regulator in Aspergillus nidulans with transcriptional activation and chromatin remodelling functions. AreA interacts with the nitrate-specific Zn(2)-C(6) cluster protein NirA and both proteins cooperate to synergistically activate nitrate-responsive genes. We have previously established that NirA in vivo DNA binding site occupancy is AreA dependent and in this report we provide a mechanistic explanation for our previous findings. We now show that AreA regulates NirA at two levels: (i) through the regulation of nitrate transporters, AreA affects indirectly the subcellular distribution of NirA which rapidly accumulates in the nucleus following induction; (ii) AreA directly stimulates NirA in vivo target DNA occupancy and does not act indirectly by chromatin remodelling. Simultaneous overexpression of NirA and the nitrate transporter CrnA bypasses the AreA requirement for NirA binding, permits utilization of nitrate and nitrite as sole N-sources in an areA null strain and leads to an AreA-independent nucleosome loss of positioning.


Subject(s)
Fungal Proteins/metabolism , Fungal Proteins/physiology , Transcription Factors/physiology , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Aspergillus nidulans/metabolism , Base Sequence , Binding Sites , Blotting, Northern , DNA Footprinting , DNA Primers , Plasmids
5.
Mol Microbiol ; 44(2): 573-83, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11972792

ABSTRACT

In Aspergillus nidulans, the genes coding for nitrate reductase (niaD) and nitrite reductase (niiA), are transcribed divergently from a common promoter region of 1200 basepairs. We have previously characterized the relevant cis-acting elements for the two synergistically acting transcriptional activators NirA and AreA. We have further shown that AreA is constitutively bound to a central cluster of four GATA sites, and is involved in opening the chromatin structure over the promoter region thus making additional cis-acting binding sites accessible. Here we show that the asymmetric mode of NirA-DNA interaction determined in vitro is also found in vivo. Binding of the NirA transactivator is not constitutive as in other binuclear C6-Zn2+-cluster proteins but depends on nitrate induction and, additionally, on the presence of a wild-type areA allele. Dissecting the role of AreA further, we found that it is required for intracellular nitrate accumulation and therefore could indirectly exert its effect on NirA via inducer exclusion. We have tested this possibility in a strain accumulating nitrate in the absence of areA. We found that in such a strain the intracellular presence of inducer is not sufficient to promote either chromatin rearrangement or NirA binding, implying that both processes are directly dependent on AreA.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/metabolism , Nitrates/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Base Sequence , Binding Sites , Consensus Sequence , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/genetics , Promoter Regions, Genetic , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...