Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Med Chem ; 67(5): 3400-3418, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38387069

ABSTRACT

The use of ß-lactam (BL) and ß-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-ß-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.


Subject(s)
Anti-Bacterial Agents , beta-Lactamase Inhibitors , Humans , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , beta-Lactamase Inhibitors/chemistry , Anti-Bacterial Agents/chemistry , Imipenem/pharmacology , beta-Lactamases , Gram-Negative Bacteria , Microbial Sensitivity Tests
2.
J Med Chem ; 66(23): 15567-15575, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38032081
3.
ACS Med Chem Lett ; 13(8): 1248-1254, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978682

ABSTRACT

Peptide-based analogues of the gut-derived incretin hormone, glucagon-like peptide 1 (GLP1), stimulate insulin secretion in a glucose-dependent manner. Currently marketed GLP1 receptor (GLP1R) agonists are safe and effective in the management of Type 2 diabetes but often offer only modest weight loss. This has prompted the search for safe and effective alternatives to enhance the weight loss component of these treatments. We have demonstrated that concomitant activation GLP1R and the glucagon receptor (GCGR) can improve glucose metabolism and provide superior weight loss when compared to selective GLP1R agonism in preclinical species. This paper will highlight chemistry structure-activity relationship optimization and summarize in vivo efficacy studies toward the discovery of a once daily balanced dual agonist 12 (MK-1462), which was advanced into clinical trials.

4.
ACS Med Chem Lett ; 13(8): 1255-1261, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978702

ABSTRACT

The combination of insulin and incretin-based therapies has emerged as a potential promising tactic for the treatment of diabetes. Here we report the first example of a unimolecular triagonist to simultaneously target insulin, GLP-1, and glucagon receptors, aiming for better glycemic control and superior weight loss. The strategy for constructing such a unimolecular triagonist is the conjugation of the insulin moiety and GLP-1R/GCGR coagonist peptide via alkyne-azide click chemistry. Two tractable series differentiated by insulin conjugation sites, B1F and B29K, were identified. Triagonist 13 prepared through the conjugation at insulin B1F and position 24 of GLP-1R/GCGR coagonist exhibited insulin activity comparable to that of insulin degludec and potent and balanced GLP-1R and GCGR activities. Pharmacokinetic profiles of 13 in both rat and minipig were also discussed.

5.
J Med Chem ; 65(15): 10419-10440, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35862732

ABSTRACT

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.


Subject(s)
Factor XIa , Pyridines , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology , Dogs , Drug Design , Factor XIa/metabolism , Pyridines/pharmacology , Rabbits , Rats
6.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35298158

ABSTRACT

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Animals , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Dogs , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Receptor, Insulin , Swine , Swine, Miniature , Therapeutic Index
7.
Bioorg Med Chem Lett ; 30(7): 127004, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32061500

ABSTRACT

In a lead optimization effort towards NS5B NNI inhibitors, two multi-step parallel libraries were designed and successfully synthesized. Through this effort we discovered compound 9B, which achieved rigorous and delicate balance of inhibition across the common genotypes and mutants with <10 nM potency. In addition, the bicyclic compounds 9B exhibited improved FASSIF solubility over the tetracyclic compound MK-8876. This strategic approach demonstrated that, even within limited reaction scope, multi-step parallel libraries could provide access to more complex chemical space. This expedient access facilitates diverse, purpose-driven optimization of SAR and physicochemical properties.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzofurans/chemical synthesis , Benzofurans/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Microbial Sensitivity Tests , Molecular Structure , Rats, Wistar , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 29(14): 1842-1848, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31109791

ABSTRACT

GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet ß-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet ß-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.


Subject(s)
Indans/metabolism , Receptors, G-Protein-Coupled/agonists , Drug Design , Humans
9.
Bioorg Med Chem Lett ; 29(11): 1380-1385, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30952592

ABSTRACT

The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.


Subject(s)
Benzimidazoles/pharmacology , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Chemistry, Pharmaceutical , Diacylglycerol O-Acyltransferase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 29(10): 1182-1186, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30926247

ABSTRACT

Previously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.0] bicyclohexane carboxylic acid moiety. Our results show that single isomer 3A maintains in vitro and in vivo inhibition against DGAT1. In contrast to previous lead compounds, 3A does not undergo isomerization during in vitro hepatocyte incubation study or in vivo mouse study.


Subject(s)
Benzimidazoles/chemistry , Carboxylic Acids/chemistry , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Animals , Benzimidazoles/metabolism , Carboxylic Acids/metabolism , Chromatography, High Pressure Liquid , Cyclohexanones/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Enzyme Inhibitors/analysis , Enzyme Inhibitors/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Isomerism , Mass Spectrometry , Mice , Rats
11.
Bioorg Med Chem Lett ; 29(24): 126104, 2019 12 15.
Article in English | MEDLINE | ID: mdl-30389294

ABSTRACT

Hepatitis C virus (HCV) NS5B polymerase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Several novel and potent HCV NS5B non-nucleoside inhibitors with unique tetracyclic bezonfuran-based structures were prepared and evaluated. Similar to clinical developmental compound MK-8876, N-linked (compounds 1 and 2) and C-linked (compounds 3 and 4) tetracyclic structures maintained broad spectrum anti-replicon potency profiles and demonstrated moderate to excellent oral bioavailability and pharmacokinetic parameters across the three preclinical animal species. To better understand the importance of tetracyclic structures related to pan genotypic potency profiles especially against clinically relevant GT1a variants, the teracycles with different ring size were prepared and in vitro evaluations suggested compounds with six number ring have better overall potency profiles.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
12.
ACS Med Chem Lett ; 9(7): 679-684, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034600

ABSTRACT

A novel series of tricyclic tetrahydroquinolines were identified as potent and selective CRTh2 receptor antagonists. The agonism and antagonism switch was achieved through structure-based drug design (SBDD) using a CRTh2 receptor homologue model. The challenge of very low exposures in pharmacokinetic studies was overcome by exhaustive medicinal chemistry lead optimization through focused SAR studies on the tricyclic core. Further optimization resulted in the identification of the preclinical candidate 4-(cyclopropyl((3aS,9R,9aR)-7-fluoro-4-(4-(trifluoromethoxy)benzoyl)-2,3,3a,4,9,9a-hexahydro-1H-cyclopenta[b]quinolin-9-yl)amino)-4-oxobutanoic acid (15c, MK-8318) with potent and selective CRTh2 antagonist activity and a favorable PK profile suitable for once daily oral dosing for potential treatment of asthma.

13.
Diabetes ; 67(6): 1173-1181, 2018 06.
Article in English | MEDLINE | ID: mdl-29540491

ABSTRACT

We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3-3H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by two study periods (150 min each), clamp period 1 (P1) and clamp period 2 (P2). At 0 min, somatostatin and GRI (36 ± 3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused intravenously; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole-body insulin clearance and insulin concentrations were not different in P1 versus P2 with HI, but whole-body insulin clearance was 23% higher and arterial insulin 16% lower in P1 versus P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (HGU) (HI mean ± SEM 2.1 ± 0.5 vs. 3.3 ± 0.4 GRI mg/kg/min). Nonhepatic glucose uptake in P1 and P2, respectively, differed between treatments (2.6 ± 0.3 and 7.4 ± 0.6 mg/kg/min with HI vs. 2.0 ± 0.2 and 8.1 ± 0.8 mg/kg/min with GRI). Thus, glycemia affected GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions.


Subject(s)
Drug Evaluation, Preclinical , Drugs, Investigational/adverse effects , Energy Metabolism/drug effects , Hypoglycemic Agents/adverse effects , Insulin, Regular, Human/analogs & derivatives , Liver/drug effects , Absorption, Physiological/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Dogs , Dose-Response Relationship, Drug , Drugs, Investigational/administration & dosage , Drugs, Investigational/pharmacokinetics , Gluconeogenesis/drug effects , Glucose Clamp Technique , Glycosylation , Humans , Hyperglycemia/metabolism , Hyperglycemia/prevention & control , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Hypoglycemic Agents/pharmacokinetics , Infusions, Intravenous , Insulin, Regular, Human/administration & dosage , Insulin, Regular, Human/adverse effects , Insulin, Regular, Human/pharmacokinetics , Liver/metabolism , Male , Metabolic Clearance Rate , Random Allocation , Somatostatin/administration & dosage , Somatostatin/adverse effects
15.
JCI Insight ; 3(1)2018 01 11.
Article in English | MEDLINE | ID: mdl-29321379

ABSTRACT

Hypoglycemia is commonly associated with insulin therapy, limiting both its safety and efficacy. The concept of modifying insulin to render its glucose-responsive release from an injection depot (of an insulin complexed exogenously with a recombinant lectin) was proposed approximately 4 decades ago but has been challenging to achieve. Data presented here demonstrate that mannosylated insulin analogs can undergo an additional route of clearance as result of their interaction with endogenous mannose receptor (MR), and this can occur in a glucose-dependent fashion, with increased binding to MR at low glucose. Yet, these analogs retain capacity for binding to the insulin receptor (IR). When the blood glucose level is elevated, as in individuals with diabetes mellitus, MR binding diminishes due to glucose competition, leading to reduced MR-mediated clearance and increased partitioning for IR binding and consequent glucose lowering. These studies demonstrate that a glucose-dependent locus of insulin clearance and, hence, insulin action can be achieved by targeting MR and IR concurrently.


Subject(s)
Glucose/metabolism , Hypoglycemia/drug therapy , Insulin/pharmacology , Animals , Antigens, CD , Blood Glucose , Cell Line , Diabetes Mellitus, Type 2 , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Lectins, C-Type/drug effects , Liver/pathology , Macrophages , Male , Mannose Receptor , Mannose-Binding Lectins/drug effects , Mice , Mice, Inbred C57BL , Rats , Receptor, Insulin/drug effects , Receptors, Cell Surface/drug effects
16.
Diabetes ; 67(2): 299-308, 2018 02.
Article in English | MEDLINE | ID: mdl-29097375

ABSTRACT

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia. The approach added saccharide units to insulin to create insulin analogs with affinity for both the insulin receptor (IR) and mannose receptor C-type 1 (MR), which functions to clear endogenous mannosylated proteins, a principle used to endow insulin analogs with glucose responsivity. Iteration of these efforts culminated in the discovery of MK-2640, and its in vitro and in vivo preclinical properties are detailed in this report. In glucose clamp experiments conducted in healthy dogs, as plasma glucose was lowered stepwise from 280 mg/dL to 80 mg/dL, progressively more MK-2640 was cleared via MR, reducing by ∼30% its availability for binding to the IR. In dose escalations studies in diabetic minipigs, a higher therapeutic index for MK-2640 (threefold) was observed versus regular insulin (1.3-fold).


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Drug Design , Hypoglycemic Agents/therapeutic use , Insulin, Regular, Human/analogs & derivatives , Lectins, C-Type/agonists , Mannose-Binding Lectins/agonists , Receptor, Insulin/agonists , Receptors, Cell Surface/agonists , Animals , Animals, Inbred Strains , Binding, Competitive , CHO Cells , Cricetulus , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Half-Life , Humans , Hyperglycemia/prevention & control , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Insulin, Regular, Human/adverse effects , Insulin, Regular, Human/pharmacokinetics , Insulin, Regular, Human/therapeutic use , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Ligands , Male , Mannose Receptor , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Metabolic Clearance Rate , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/adverse effects , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/therapeutic use , Swine , Swine, Miniature
17.
Bioorg Med Chem Lett ; 27(23): 5344-5348, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29110986

ABSTRACT

New synthetic methods were developed for the preparation of 2,3,6-trisubstituted 1-oxo-1,2-dihydroisoquinolines as CRTh2 antagonists. The isoquinolinone core could be constructed before the introduction of substitution groups or synthesized through a catalytic intramolecular cyclization reaction with desired substitution groups properly installed. These synthetic strategies have helped to accelerate the SAR development of this series, and potent lead compounds were identified in both the CRTh2 receptor binding assay and the CD11b biomarker assay.


Subject(s)
Isoquinolines/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 60(9): 3594-3605, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28252959

ABSTRACT

Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging SNAr reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Chromatography, Liquid , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy
19.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28245354

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Animals , Brain/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Rats , Rats, Wistar
20.
ACS Med Chem Lett ; 8(2): 221-226, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197316

ABSTRACT

GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound 24 demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...