Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 24(12): 2475-2487, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36468420

ABSTRACT

Perfluorinated carboxylic acids (PFCAs), particularly perfluorooctanoic acid (PFOA), are broadly used for chemical synthesis and as surfactants, but they pose a serious threat to humans and wildlife because of toxicity concerns, environmental stability, and tendency to bioaccumulate. PFCA waste is commercially treated in incinerators, however, their exact degradation mechanisms are still unknown. In the present work, we report the decomposition mechanism and kinetics of straight-chain PFCAs using quantum chemistry and reaction rate theory calculations. Degradation mechanisms and associated kinetic parameters are determined for the complete series of straight-chain PFCAs from perfluorononanoic acid (C8F17COOH, C9) to fluoroformic acid (FCOOH, C1). Our results show that PFCA decomposition follows an analogous mechanism to perfluorinated sulfonic acids, where HF elimination from the acid head group produces a three membered ring intermediate, in this case a perfluorinated α-lactone. These perfluorinated α-lactones are short-lived intermediates that readily degrade into perfluorinated acyl fluorides and CO, thus shortening the perfluorinated chain by one C atom. Because perfluorinated acyl fluorides are known to hydrolyse to PFCAs, repeated cycles of carboxylic acid decomposition followed by acyl fluoride hydrolysis provides a mechanism for the complete mineralization of PFCAs to HF, CO, CO2, COF2, and CF2 during thermal decomposition in the presence of water vapor. These results provide a theoretical basis for future detailed chemical kinetic studies of incineration reactors and will assist in their design and optimisation so as to more efficiently decompose PFCAs and related waste.


Subject(s)
Carboxylic Acids , Fluorocarbons , Humans , Kinetics , Carboxylic Acids/chemistry , Fluorides , Fluorocarbons/chemistry , Caprylates/chemistry , Models, Theoretical
2.
Chem Res Toxicol ; 35(3): 522-528, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35258279

ABSTRACT

Ethyl ester flavor additives are used in e-liquids to produce a citrus flavor. Although these compounds are considered safe as flavor additives, this only applies to oral consumption and not vaping operations, where they can decompose into potentially harmful compounds including carboxylic acids. Further decomposition of these carboxylic acids is expected to produce ketene, which is a strong respiratory poison that can cause fatal lung damage at low concentrations. This study develops a kinetic model of the thermal decomposition of ethyl ester flavor additives and simulates the decomposition of these compounds under vaping conditions. These results show that under normal operating conditions, it is unlikely for any harmful compounds to be present in-lung. However, at higher operating temperatures, there is the potential for acetic and butanoic acid to be present in the lungs at concentrations that cause irritation, and where repeated exposure may lead to bronchitis. At more extreme operating conditions it is possible for harmful levels of ketene to be produced such that it could cause fatal or severely detrimental effects upon repeated exposure. These high temperatures can be reached under "dry" operating conditions that arise as a result of improper use, particularly in user-modified e-cigarettes.


Subject(s)
Electronic Nicotine Delivery Systems , Poisons , Vaping , Esters , Flavoring Agents/analysis , Vaping/adverse effects
3.
J Phys Chem A ; 124(39): 8050-8056, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32875798

ABSTRACT

Triclosan (TCS) is a commonly used antimicrobial agent which persists in the environment and may undergo chlorination and/or photodegradation to produce toxic polychlorinated dibenzo-p-dioxins and polychlorinated benzenes. TCS accumulates in wastewater treatment biosolids, which may be used to fuel waste-to-energy plants, although little is known about the fate of TCS at high temperatures. Here, we have studied the thermal decomposition of TCS and chlorinated TCS derivatives in the gas phase using computational chemistry coupled with reaction rate theory calculations to predict rate coefficients and develop a chemical kinetic model to simulate TCS pyrolysis in a plug flow reactor. TCS is shown to interconvert with 4-chloro-2-(2,4-dichlorophenoxy)phenol (TCSi) with a relatively low barrier, achieving equilibrium at temperatures of around 900 K and above. Dissociation of TCS and TCSi proceeds in parallel with barriers of ca. 60-65 kcal/mol to produce dichlorodibenzo-p-dioxin chlorobenzoquinone isomers. Reactor simulations demonstrate that TCS incineration at a temperature of 1100 K or higher leads to the formation of toxic chlorinated aromatics.


Subject(s)
Anti-Infective Agents, Local/chemistry , Chlorine/chemistry , Pyrolysis , Triclosan/chemistry , Water Pollutants, Chemical/chemistry
4.
PLoS One ; 15(9): e0238140, 2020.
Article in English | MEDLINE | ID: mdl-32881943

ABSTRACT

Vitamin E acetate (VEA) is strongly linked to the outbreak of electronic-cigarette or vaping product use-associated lung injury (EVALI). It has been proposed that VEA decomposition to ketene-a respiratory poison that damages lungs at low ppm levels-may play a role in EVALI. However, there is no information available on the temperature at which VEA decomposes and how this correlates with the vaping process. We have studied the temperature-dependent kinetics of VEA decomposition using quantum chemical and statistical mechanical modelling techniques, developing a chemical kinetic model of the vaping process. This model predicts that, under typical vaping conditions, the use of VEA contaminated e-cigarette products is unlikely to produce ketene at harmful levels. However, at the high temperatures encountered at low e-cigarette product levels, which produce 'dry hits', ketene concentrations are predicted to reach acutely toxic levels in the lungs (as high as 30 ppm). We therefore hypothesize that dry hit vaping of e-cigarette products containing VEA contributes to EVALI.


Subject(s)
Ethylenes/metabolism , Ketones/metabolism , Lung Injury/pathology , Vaping/adverse effects , Vitamin E/metabolism , Ethylenes/chemistry , Ethylenes/toxicity , Humans , Ketones/chemistry , Ketones/toxicity , Kinetics , Lung Injury/chemically induced , Temperature , Vitamin E/chemistry
5.
Environ Sci Process Impacts ; 22(1): 152-160, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31778134

ABSTRACT

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects on human health. Thermal treatment, in which contaminants are vaporised and decomposed in the gas-phase, is one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA in the gas phase by applying computational chemistry and reaction rate theory methods. The preferred decomposition channel for both substances involves the elimination of P(OH)3 to yield the imine N-methylene-glycine (from GP) or methanimine (from AMPA), with relatively low barrier heights (ca. 45 kcal mol-1). The half-life of GP and AMPA at 1000 K are predicted to be 0.1 and 4 ms respectively, and they should be readily destroyed via conventional incineration processes. The further decomposition of N-methylene-glycine is expected to also take place at similar temperatures, leading to N-methyl-methanimine + CO2, with a barrier height of ca. 48 kcal mol-1. The imine decomposition products of GP and AMPA are expected to react with water vapour to form simple amines and carbonyl compounds.


Subject(s)
Glycine/analogs & derivatives , Herbicides , Amines , Glycine/chemistry , Herbicides/chemistry , Isoxazoles/chemistry , Kinetics , Tetrazoles/chemistry , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemistry , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...