Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-36892269

ABSTRACT

Biosensors with two-dimensional materials have gained wide interest due to their high sensitivity. Among them, single-layer MoS2 has become a new class of biosensing platform owing to its semiconducting property. Immobilization of bioprobes directly onto the MoS2 surface with chemical bonding or random physisorption has been widely studied. However, these approaches potentially cause a reduction of conductivity and sensitivity of the biosensor. In this work, we designed peptides that spontaneously align into monomolecular-thick nanostructures on electrochemical MoS2 transistors in a non-covalent fashion and act as a biomolecular scaffold for efficient biosensing. These peptides consist of repeated domains of glycine and alanine in the sequence and form self-assembled structures with sixfold symmetry templated by the lattice of MoS2. We investigated electronic interactions of self-assembled peptides with MoS2 by designing their amino acid sequence with charged amino acids at both ends. Charged amino acids in the sequence showed a correlation with the electrical properties of single-layer MoS2, where negatively charged peptides caused a shift of threshold voltage in MoS2 transistors and neutral and positively charged peptides had no significant effect on the threshold voltage. The transconductance of transistors had no decrease due to the self-assembled peptides, indicating that aligned peptides can act as a biomolecular scaffold without degrading the intrinsic electronic properties for biosensing. We also investigated the impact of peptides on the photoluminescence (PL) of single-layer MoS2 and found that the PL intensity changed sensitively depending on the amino acid sequence of peptides. Finally, we demonstrated a femtomolar-level sensitivity of biosensing using biotinylated peptides to detect streptavidin.

3.
Langmuir ; 37(29): 8696-8704, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34278791

ABSTRACT

Chiral recognition of peptides on solid surfaces has been studied for a better understanding of their assembly mechanism toward its applications in stereochemistry and enantioselective catalysis. However, moving from small peptides such as dipeptides, understanding the chiral recognition of larger biomolecules such as oligopeptides or peptides with a larger sequence is challenging. Furthermore, their intrinsic mechanism for chiral recognition in liquid conditions was poorly investigated experimentally. Here, we used in/ex situ atomic force microscopy (AFM) to investigate the chiral recognition of self-assembled structures of l/d-type peptides on molybdenum disulfide (MoS2). We chose single-layer MoS2 with a triangular shape as a substrate for the self-assembly of peptides. The facet edges of MoS2 were utilized as a landmark to identify the crystallographic orientation of their ordered structures. We found both peptide enantiomers formed nanowires on MoS2 with a mirror symmetry according to the facet edges of MoS2. From in situ AFM measurements, we found a dimension of a unit cell in the self-assembled structure and proposed a model of lattice matching between peptides and MoS2 lattice. The lattice matching for chiral recognition was further investigated by changing peptide sequences and surface lattice from MoS2 to graphite. This work further deepened the understanding of biomolecular chiral recognition and will lead us to rationally design specific morphologies and conformations of chiral self-assembled structures of peptides with expected functions in the future.


Subject(s)
Graphite , Molybdenum , Dipeptides , Microscopy, Atomic Force , Peptides
4.
J Photochem Photobiol B ; 189: 81-86, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30317051

ABSTRACT

Caged luciferin compounds of firefly luciferins have recently drawn much attention since firefly bioluminescence, in which D-luciferin acts as a substrate, is widely used in noninvasive gene-expression imaging, studies of in vivo cell trafficking, and the detection of enzyme activity. The objectives of this study are the development of new caged luciferins and the quantitative determination of the photophysical parameters of their photo-decomposition. We synthesized 7-(diethylaminocoumarin)-4-(yl)methyl caged D-luciferin (DEACM-caged D-luciferin) and quantitatively characterized its absorption spectrum, bioluminescence, and photoproducts using chiral HPLC chromatography, as a function of light-irradiation time. We observed that 4 min of UV irradiation generated maximum D-luciferin concentrations, which corresponds to 16.2% of the original DEACM-caged-D-luciferin concentration. Moreover, we evaluated not only the rate of photocleavage (0.20/min) from DEACM-caged D-luciferin to luciferin but also the rate of caged-luciferin degradation that did not produce luciferin (0.28/min) and the rate of luciferin decomposition (0.20/min) after exposure to irradiation with a 70 mW/cm2 high-pressure mercury lamp (254-600 nm). The formation rate of L-luciferin via DEACM-caged-D-luciferin photocleavage was smaller by a factor of 1/10 compared with that of D-luciferin. These quantitative measurements and simultaneous evaluations of photocleavage, degradation, and decomposition are the most important and original methodology presented in this study.


Subject(s)
Benzothiazoles/analysis , Coumarins/chemical synthesis , Coumarins/chemistry , Kinetics , Luminescent Measurements , Optical Rotation , Photolysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...