Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft comput ; 25(24): 15345-15362, 2021.
Article in English | MEDLINE | ID: mdl-34456618

ABSTRACT

The new coronavirus disease (COVID-19) has been declared a pandemic since March 2020 by the World Health Organization. It consists of an emerging viral infection with respiratory tropism that could develop atypical pneumonia. Experts emphasize the importance of early detection of those who have the COVID-19 virus. In this way, patients will be isolated from other people and the spread of the virus can be prevented. For this reason, it has become an area of interest to develop early diagnosis and detection methods to ensure a rapid treatment process and prevent the virus from spreading. Since the standard testing system is time-consuming and not available for everyone, alternative early screening techniques have become an urgent need. In this study, the approaches used in the detection of COVID-19 based on deep learning (DL) algorithms, which have been popular in recent years, have been comprehensively discussed. The advantages and disadvantages of different approaches used in literature are examined in detail. We further present the databases and major future challenges of DL-based COVID-19 detection. The computed tomography of the chest and X-ray images gives a rich representation of the patient's lung that is less time-consuming and allows an efficient viral pneumonia detection using the DL algorithms. The first step is the preprocessing of these images to remove noise. Next, deep features are extracted using multiple types of deep models (pretrained models, generative models, generic neural networks, etc.). Finally, the classification is performed using the obtained features to decide whether the patient is infected by coronavirus or it is another lung disease. In this study, we also give a brief review of the latest applications of cough analysis to early screen the COVID-19 and human mobility estimation to limit its spread.

2.
Comput Biol Med ; 136: 104765, 2021 09.
Article in English | MEDLINE | ID: mdl-34416571

ABSTRACT

The COVID-19 epidemic, in which millions of people suffer, has affected the whole world in a short time. This virus, which has a high rate of transmission, directly affects the respiratory system of people. While symptoms such as difficulty in breathing, cough, and fever are common, hospitalization and fatal consequences can be seen in progressive situations. For this reason, the most important issue in combating the epidemic is to detect COVID-19(+) early and isolate those with COVID-19(+) from other people. In addition to the RT-PCR test, those with COVID-19(+) can be detected with imaging methods. In this study, it was aimed to detect COVID-19(+) patients with cough acoustic data, which is one of the important symptoms. Based on these data, features were obtained from traditional feature extraction methods using empirical mode decomposition (EMD) and discrete wavelet transform (DWT). Deep features were also obtained using pre-trained ResNet50 and pre-trained MobileNet models. Feature selection was applied to all obtained features with the ReliefF algorithm. In this case, the highest 98.4% accuracy and 98.6% F1-score values were obtained by selecting the EMD + DWT features using ReliefF. In another study in which deep features were used, features obtained from ResNet50 and MobileNet using scalogram images were used. For the features selected using the ReliefF algorithm, the highest performance was found with support vector machines-cubic as 97.8% accuracy and 98.0% F1-score. It has been determined that the features obtained by traditional feature approaches show higher performance than deep features. Among the chaotic measurements, the approximate entropy measurement was determined to be the highest distinguishing feature. According to the results, a highly successful study is presented with cough acoustic data that can easily be obtained from mobile and computer-based applications. We anticipate that this study will be useful as a decision support system in this epidemic period, when it is important to correctly identify even one person.


Subject(s)
COVID-19 , Acoustics , Cough/diagnosis , Humans , SARS-CoV-2 , Wavelet Analysis
3.
Comput Biol Med ; 137: 104771, 2021 10.
Article in English | MEDLINE | ID: mdl-34450381

ABSTRACT

COVID-19 is a severe epidemic affecting the whole world. This epidemic, which has a high mortality rate, affects the health systems and the economies of countries significantly. Therefore, ending the epidemic is one of the most important priorities of all states. For this, automatic diagnosis and detection systems are very important to control the epidemic. In addition to the recommendation of the "reverse transcription-polymerase chain reaction (RT-PCR)" test, additional diagnosis and detection systems are required. Hence, based on the fact that the COVID-19 virus attacks the lungs, automatic diagnosis and detection systems developed using X-ray and CT images come to the fore. In this study, a high-performance detection system was implemented with three different CNN (ResNet50, ResNet101, InceptionResNetV2) models and X-ray images of three different classes (COVID-19, Normal, Pneumonia). The particle swarm optimization (PSO) algorithm and ant colony algorithm (ACO) was applied among the feature selection methods, and their performances were compared. The results were obtained using support vector machines (SVM) and a k-nearest neighbor (k-NN) classifier using the 10-fold cross-validation method. The highest overall accuracy performance was 99.83% with the SVM algorithm without feature selection. The highest performance was achieved after the feature selection process with the SVM + PSO method as 99.86%. As a result, higher performance with less computational load has been achieved by realizing the feature selection. Based on the high results obtained, it is thought that this study will benefit radiologists as a decision support system.


Subject(s)
COVID-19 , Algorithms , Humans , SARS-CoV-2 , Support Vector Machine , X-Rays
4.
Pattern Anal Appl ; 24(3): 1207-1220, 2021.
Article in English | MEDLINE | ID: mdl-33994847

ABSTRACT

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

5.
Comput Biol Med ; 45: 72-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24480166

ABSTRACT

In this study, the best combination of short-term heart rate variability (HRV) measures was investigated to distinguish 29 patients with congestive heart failure from 54 healthy subjects in the control group. In the analysis performed, wavelet packet transform based frequency-domain measures and several non-linear parameters were used in addition to standard HRV measures. The backward elimination and unpaired statistical analysis methods were used to select the best one among all possible combinations of these measures. Five distinct typical classifiers with different parameters were evaluated in discriminating these two groups using the leave-one-out cross validation method. Each algorithm was tested 30 times to determine the repeatability of the results. The results imply that the backward elimination method gives better performance when compared to the statistical significance method in the feature selection stage. The best performance (82.75%, 96.29%, and 91.56% for the sensitivity, specificity, and accuracy) was obtained by using the SVM classifier with 27 selected features including non-linear and wavelet-based measures.


Subject(s)
Heart Failure/physiopathology , Heart Rate/physiology , Wavelet Analysis , Adult , Aged , Algorithms , Case-Control Studies , Electrocardiography , Female , Humans , Male , Middle Aged , Nonlinear Dynamics , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...