Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 13(41): 18481-4, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21938303

ABSTRACT

Direct measurements of the dissociation behaviors of pure methane and ethane hydrates trapped in sintered tetrahydrofuran hydrate through a temperature ramping method showed that the tetrahydrofuran hydrate controls dissociation of the gas hydrates under thermodynamic instability at temperatures above the melting point of ice.

2.
J Phys Chem A ; 115(32): 8889-94, 2011 Aug 18.
Article in English | MEDLINE | ID: mdl-21744826

ABSTRACT

The dissociation of C(2)H(6) hydrate particles by slow depressurization at temperatures slightly below the ice melting point was studied using optical microscopy and Raman spectroscopy. Visual observations and Raman measurements revealed that ethane hydrates can be present as a metastable state at pressures lower than the dissociation pressures of the three components: ice, hydrate, and free gas. However, they decompose into liquid water and gas phases once the system pressure drops to the equilibrium boundary for supercooled water, hydrate, and free gas. Structural analyses of obtained Raman spectra indicate that structures of the metastable hydrates and liquid water from the hydrate decay are fundamentally identical to those of the stable hydrates and supercooled water without experience of the hydration. These results imply a considerably high energy barrier for the direct hydrate-to-ice transition. Water solidification, probably induced by dynamic nucleation, was also observed during melting.

4.
J Phys Chem A ; 115(5): 643-7, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21229965

ABSTRACT

Experimental NMR measurements for (13)C chemical shifts of propane molecules encaged in 16-hedral cages of structure II clathrate hydrate were conducted to investigate the effects of guest-host interaction of pure propane clathrate on the (13)C chemical shifts of propane guests. Experimental (13)C NMR measurements revealed that the clathrate hydration of propane reverses the (13)C chemical shifts of methyl and methylene carbons in propane guests to gaseous propane at room temperature and atmospheric pressure or isolated propane, suggesting a change in magnetic environment around the propane guest by the clathrate hydration. Inversion of the (13)C chemical shifts of propane clathrate suggests that the deshielding effect of the water cage on the methyl carbons of the propane molecule encaged in the 16-hedral cage is greater than that on its methylene carbon.

6.
J Phys Chem A ; 114(35): 9456-61, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20712338

ABSTRACT

Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.


Subject(s)
Ethane/chemistry , Methane/chemistry , Gases/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Powder Diffraction , Temperature
7.
Acta Crystallogr C ; 61(Pt 2): o65-6, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15695912

ABSTRACT

Tetra-n-butylammonium bromide forms the title semi-clathrate hydrate crystal, C16H36N+.Br-.38H2O, under atmospheric pressure. The cation and anion lie at sites with mm symmetry and seven water molecules lie at sites with m symmetry in space group Pmma. Br- anions construct a cage structure with the water molecules. Tetra-n-butylammonium cations are disordered and are located at the centre of four cages, viz. two tetrakaidecahedra and two pentakaidecahedra in ideal cage structures, while all the dodecahedral cages are empty.

8.
J Phys Chem B ; 109(12): 5802-7, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-16851632

ABSTRACT

We used a confocal scanning microscope to observe growth and texture change of ice due to the dissociation of methane gas clathrate hydrate (CH(4) hydrate). The experiments were done under CH(4) gas atmospheric pressure and isothermal conditions between 170 and 268 K. Above 193 K, the dissociation of CH(4) hydrate resulted in many small ice particles that covered the hydrate surface. These ice particles had roughly the same shape and density between 193 and 210 K. In contrast, above 230 K the ice particles developed into a sheet of ice that covered the hydrate surface. Moreover, the measured release of CH(4) gas decreased when the sheet of ice formed at the surface of the hydrate. These findings can explain the anomalous preservation behavior of CH(4) hydrate; that is, the known increase of storage stability of CH(4) hydrate above 240 K is likely related to the formation of the ice that we observed in the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...