Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 22(1): 82-93, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37773022

ABSTRACT

Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS: SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Purines/metabolism , Purine Nucleotides/metabolism , Hypoxanthine Phosphoribosyltransferase/metabolism , Lung Neoplasms/genetics
2.
iScience ; 26(1): 105776, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594009

ABSTRACT

Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.

3.
Cell Tissue Res ; 386(2): 391-413, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34319433

ABSTRACT

All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.


Subject(s)
Aluminum/metabolism , Egg Proteins/metabolism , Ferritins/metabolism , Helminth Proteins/metabolism , Iron/metabolism , Planarians/metabolism , Amino Acid Sequence , Animals , Egg Proteins/analysis , Egg Proteins/genetics , Ferritins/analysis , Ferritins/genetics , Helminth Proteins/analysis , Helminth Proteins/genetics , Ovum/growth & development , Ovum/metabolism , Planarians/genetics , Planarians/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...