Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 482, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590030

ABSTRACT

Histone variants H2A.Z and H3.3 are epigenetic regulators of memory, but roles of other variants are not well characterized. macroH2A (mH2A) is a structurally unique histone that contains a globular macrodomain connected to the histone region by an unstructured linker. Here we assessed if mH2A regulates memory and if this role varies for the two mH2A-encoding genes, H2afy (mH2A1) and H2afy2 (mH2A2). We show that fear memory is impaired in mH2A1, but not in mH2A2-deficient mice, whereas both groups were impaired in a non-aversive spatial memory task. However, impairment was larger for mH2A1- deficient mice, indicating a preferential role for mH2A1 over mH2A2 in memory. Accordingly, mH2A1 depletion in the mouse hippocampus resulted in more extensive transcriptional de-repression compared to mH2A2 depletion. mH2A1-depleted mice failed to induce a normal transcriptional response to fear conditioning, suggesting that mH2A1 depletion impairs memory by altering transcription. Using chromatin immunoprecipitation (ChIP) sequencing, we found that both mH2A proteins are enriched on transcriptionally repressed genes, but only mH2A1 occupancy was dynamically modified during learning, displaying reduced occupancy on upregulated genes after training. These data identify mH2A as a regulator of memory and suggest that mH2A1 supports memory by repressing spurious transcription and promoting learning-induced transcriptional activation.


Subject(s)
Hippocampus , Histones , Animals , Hippocampus/metabolism , Histones/genetics , Histones/metabolism , Mice
3.
Alzheimers Res Ther ; 13(1): 30, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33472690

ABSTRACT

BACKGROUND: Circulating autoantibodies and sex-dependent discrepancy in prevalence are unexplained phenomena of Alzheimer's disease (AD). Using the 3xTg-AD mouse model, we reported that adult males show early manifestations of systemic autoimmunity, increased emotional reactivity, enhanced expression of the histone variant macroH2A1 in the cerebral cortex, and loss of plaque/tangle pathology. Conversely, adult females display less severe autoimmunity and retain their AD-like phenotype. This study examines the link between immunity and other traits of the current 3xTg-AD model. METHODS: Young 3xTg-AD and wild-type mice drank a sucrose-laced 0.4 mg/ml solution of the immunosuppressant cyclophosphamide on weekends for 5 months. After behavioral phenotyping at 2 and 6 months of age, we assessed organ mass, serologic markers of autoimmunity, molecular markers of early AD pathology, and expression of genes associated with neurodegeneration. RESULTS: Chronic immunosuppression prevented hematocrit drop and reduced soluble Aß in 3xTg-AD males while normalizing the expression of histone variant macroH2A1 in 3xTg-AD females. This treatment also reduced hepatosplenomegaly, lowered autoantibody levels, and increased the effector T cell population while decreasing the proportion of regulatory T cells in both sexes. Exposure to cyclophosphamide, however, neither prevented reduced brain mass and BDNF expression nor normalized increased tau and anxiety-related behaviors. CONCLUSION: The results suggest that systemic autoimmunity increases soluble Aß production and affects transcriptional regulation of macroH2A1 in a sex-related manner. Despite the complexity of multisystem interactions, 3xTg-AD mice can be a useful in vivo model for exploring the regulatory role of autoimmunity in the etiology of AD-like neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Epigenesis, Genetic , Female , Immunosuppression Therapy , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid , tau Proteins/metabolism
4.
Sci Rep ; 10(1): 14331, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868857

ABSTRACT

Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.


Subject(s)
Fear/physiology , Histones/physiology , Memory/physiology , Sex Characteristics , Stress Disorders, Post-Traumatic/physiopathology , Animals , Association Learning/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Female , Hyperalgesia/genetics , Male , Maze Learning , Mice, Knockout , Neuronal Plasticity/genetics
5.
eNeuro ; 5(5)2018.
Article in English | MEDLINE | ID: mdl-30417078

ABSTRACT

Memory formation is a protracted process that initially involves the hippocampus and becomes increasingly dependent on the cortex over time, but the mechanisms of this transfer are unclear. We recently showed that hippocampal depletion of the histone variant H2A.Z enhances both recent and remote memories, but the use of virally mediated depletion reduced H2A.Z levels throughout testing, making its temporally specific function unclear. Given the lack of drugs that target histone variants, we tested existing drugs for efficacy against H2A.Z based on their targeting of known H2A.Z regulators. The Tip60 (part of H2A.Z deposition complex) inhibitor Nu9056 reduced H2A.Z binding, whereas the histone deacetylase (HDAC) inhibitor Trichostatin-A increased H2A.Z acetylation without influencing total H2A.Z in cultured hippocampal neurons. Tip60 (but not HDAC) inhibition 23 h after learning enhanced remote (tested at 7 d) and not recent (tested at 24 h) contextual fear memory in mice. In contrast, Tip60 inhibition 30 d after learning impaired recall of remote memory after 1 h, but protected the memory from further decline 24 h later. These data provide the first evidence of a delayed postlearning role for histone variants in supporting memory transfer during systems consolidation.


Subject(s)
Fear/drug effects , Histones/metabolism , Lysine Acetyltransferase 5/metabolism , Memory/drug effects , Thiazoles/pharmacology , Trans-Activators/metabolism , Animals , Cognition/drug effects , Cognition/physiology , Fear/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylases/metabolism , Histones/genetics , Male , Memory/physiology , Mice, Inbred C57BL , Nucleosomes/metabolism
6.
Cell Rep ; 22(5): 1124-1131, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29386101

ABSTRACT

Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young versus aged mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Histones/metabolism , Learning/physiology , Animals , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Nucleosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...