Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Biochem Biotechnol ; 183(2): 582-600, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28889346

ABSTRACT

Metals as a resource are depleting, and on another side, it fetches serious environmental pollution causing a threat to human health and ecosystem. The heavy metal accumulation due to anthropogenic activities results in toxicological manifestation. The traditional methods of remediation are not cost effective, efficient, and ecofriendly which necessitate and motivate towards the safe, effective, and ecofriendly biological methods. The increasing presence of heavy metals in the microbial habitat compels the microbes to develop the ability to tolerate or resist the presence of heavy metals. Exopolysaccharide (EPS) production is one of the strategies of microbes to fight against metal stress. EPS is a microbial biopolymer which is generally produced under stress from harsh environment and nutrition conditions. EPSs are cell-associated or secreted outside the cell and comprised organic macromolecules such as polysaccharides, proteins, and phospholipids in addition to some non-polymeric molecules. EPSs work as competent biosorbents with an anionic reactant group that effectively sequesters cationic heavy metals by electrostatic interactions. The present paper summarizes the EPSs with its types, role, and biosynthesis and an endeavor to elucidate the interaction mechanism of EPSs with heavy metal with supportive and distinctive applications for heavy metal exclusion. The review concluded with the current challenges and future prospects to make the EPS an efficient biosorbent.


Subject(s)
Environmental Pollutants/chemistry , Fungal Polysaccharides/chemistry , Metals, Heavy/chemistry , Polysaccharides, Bacterial/chemistry
2.
Pestic Biochem Physiol ; 123: 49-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26267052

ABSTRACT

Mosquitoes spread lethal diseases like malaria and dengue fever to humans. Considering mosquito vector control as one of the best alternatives to reduce new infections, here we have analyzed the effect of purified pigment prodigiosin extracted from Serratia marcescens (NMCC 75) against larval and pupal stages of Aedes aegypti and Anopheles stephensi mosquitoes. Mosquito larvicidal activities of purified prodigiosin revealed LC50 values of 14 ± 1.2, 15.6 ± 1.48, 18 ± 1.3, 21 ± 0.87 µg/ml against early IInd, IIIrd, IVth instar and pupal stages of Ae. aegypti, respectively. LC50 values for An. stephensi were found to be 19.7 ± 1.12, 24.7 ± 1.47, 26.6 ± 1.67, 32.2 ± 1.79 µg/ml against early IInd, IIIrd, IVth instar and pupae of An. stephensi, respectively. Further investigations toward understanding modes of action revealed variations in the activities of esterases, acetylcholine esterases, phosphatases, proteases and total proteins in the fourth instar larvae of Ae. aegypti indicating intrinsic difference in biochemical features due to prodigiosin treatment. Although there was no inhibition of enzymes like catalase and oxidase but may have profound inhibitory effect on carbonic anhydrase or H(+)-V-ATPase which is indicated by change in the pH of midgut and caeca of mosquito larvae. This reduced pH may be possibly due to the proton pump inhibitory activity of prodigiosin. Pure prodigiosin can prove to be an important molecule for mosquito control at larval and pupal stages of Ae. aegypti and An. stephensi. This is the first report on the mosquito pupaecidal activity of prodigiosin and its possible mechanism of action.


Subject(s)
Insecticides/pharmacology , Prodigiosin/pharmacology , Serratia marcescens/chemistry , Aedes/drug effects , Animals , Anopheles/drug effects , Larva/drug effects , Pupa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...