Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2225, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472177

ABSTRACT

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.


Subject(s)
Graphite , Nucleosomes , Graphite/chemistry , Cryoelectron Microscopy , Water
2.
Curr Opin Genet Dev ; 85: 102163, 2024 04.
Article in English | MEDLINE | ID: mdl-38412564

ABSTRACT

It is long known that an RNA polymerase transcribing through a nucleosome can generate subnucleosomal particles called hexasomes. These particles lack an H2A-H2B dimer, breaking the symmetry of a nucleosome and revealing new interfaces. Whether hexasomes are simply a consequence of RNA polymerase action or they also have a regulatory impact remains an open question. Recent biochemical and structural studies of RNA polymerases and chromatin remodelers with hexasomes motivated us to revisit this question. Here, we build on previous models to discuss how formation of hexasomes can allow sophisticated regulation of transcription and also significantly impact chromatin folding. We anticipate that further cellular and biochemical analysis of these subnucleosomal particles will uncover additional regulatory roles.


Subject(s)
Chromatin , Nucleosomes , Nucleosomes/genetics , Chromatin/genetics , DNA-Directed RNA Polymerases/genetics
3.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106110

ABSTRACT

Liquid-liquid phase separation (LLPS) is driven by weak multi-valent interactions. Such interactions can result in the formation of puncta in cells and droplets in vitro . The heterochromatin protein HP1α forms droplets with chromatin in vitro and is found in puncta in cells. A common approach to visualize the dynamics of HP1α in cells is to genetically encode fluorescent tags on the protein. HP1α modified with tags such as GFP has been shown to localize to dynamic puncta in vivo . However, whether tagged HP1α retains its intrinsic phase separation properties has not been systematically studied. Here, using different C-terminal tags (AID-sfGFP, mEGFP, and UnaG), we assessed how tag size and linker length affected the phase separation ability of HP1α with DNA in vitro . We found that the AID-sfGFP tag (52 kDa) promoted HP1α phase-separation, possibly driven by the highly disordered AID degron. The mEGFP tag (27 kDa) inhibited phase-separation by HP1α, whereas an UnaG tag (13 kDa) with a 16 amino acid linker showed minimal perturbation. The UnaG tag can thus be used in cellular studies of HP1α to better correlate in vitro and in vivo studies. To test if cellular crowding overcomes the negative effects of large tags in vivo , we used polyethylene glycol (PEG) to mimic crowding in vitro . We found that addition of 10% PEG8000 or PEG4000 enables phase separation by GFP-tagged HP1α at comparable concentrations as untagged HP1α. However, these crowding agents also substantially dampened the differences in phase-separation between wild-type and mutant HP1α proteins. PEG further drove phase-separation of Maltose Binding Protein (MBP), a tag often used to solubilize other proteins. These results suggest that phase-separation of biological macromolecules with PEG should be interpreted with caution as PEG-based crowding agents may change the types of interactions made within the phases.

4.
Nat Struct Mol Biol ; 30(10): 1571-1581, 2023 10.
Article in English | MEDLINE | ID: mdl-37696956

ABSTRACT

Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.


Subject(s)
Chromatin , Nucleosomes , Animals , Mice , Histones/metabolism , DNA , Chromatin Assembly and Disassembly , Adenosine Triphosphatases/metabolism , Mammals/genetics
5.
Mol Cell ; 83(16): 2872-2883.e7, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595555

ABSTRACT

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Chromatin/genetics , Cryoelectron Microscopy , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lysine , Nucleosomes/genetics , Humans
6.
bioRxiv ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37546986

ABSTRACT

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). To address this issue, we developed graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitated collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.

7.
Science ; 381(6655): 319-324, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37384669

ABSTRACT

Unlike other chromatin remodelers, INO80 preferentially mobilizes hexasomes, which can form during transcription. Why INO80 prefers hexasomes over nucleosomes remains unclear. Here, we report structures of Saccharomyces cerevisiae INO80 bound to a hexasome or a nucleosome. INO80 binds the two substrates in substantially different orientations. On a hexasome, INO80 places its ATPase subunit, Ino80, at superhelical location -2 (SHL -2), in contrast to SHL -6 and SHL -7, as previously seen on nucleosomes. Our results suggest that INO80 action on hexasomes resembles action by other remodelers on nucleosomes such that Ino80 is maximally active near SHL -2. The SHL -2 position also plays a critical role for nucleosome remodeling by INO80. Overall, the mechanistic adaptations used by INO80 for preferential hexasome sliding imply that subnucleosomal particles play considerable regulatory roles.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromatin/metabolism , Histones/metabolism , Nucleosomes/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry
8.
Proc Natl Acad Sci U S A ; 120(18): e2218085120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094140

ABSTRACT

Nuclear DNA in eukaryotes is wrapped around histone proteins to form nucleosomes on a chromatin fiber. Dynamic folding of the chromatin fiber into loops and variations in the degree of chromatin compaction regulate essential processes such as transcription, recombination, and mitotic chromosome segregation. Our understanding of the physical properties that allow chromatin to be dynamically remodeled even in highly compacted states is limited. Previously, we reported that chromatin has an intrinsic capacity to phase separate and form dynamic liquid-like condensates, which can be regulated by cellular factors [B. A. Gibson et al., Cell 179, 470-484.e421 (2019)]. Recent contradictory reports claim that a specific set of solution conditions is required for fluidity in condensates that would otherwise be solid [J. C. Hansen, K. Maeshima, M. J. Hendzel, Epigenetics Chromatin 14, 50 (2021); H. Strickfaden et al., Cell 183, 1772-1784.e1713 (2020)]. We sought to resolve these discrepancies, as our ability to translate with confidence these biophysical observations to cells requires their precise characterization. Moreover, whether chromatin assemblies are dynamic or static affects how processes such as transcription, loop extrusion, and remodeling will engage them inside cells. Here, we show in diverse conditions and without specific buffering components that chromatin fragments form phase separated fluids in vitro. We also explore how sample preparation and imaging affect the experimental observation of chromatin condensate dynamics. Last, we describe how liquid-like in vitro behaviors can translate to the locally dynamic but globally constrained chromatin movement observed in cells.


Subject(s)
Chromatin , Histones , Histones/metabolism , Nucleosomes , DNA/metabolism , Chromatin Assembly and Disassembly
9.
bioRxiv ; 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36993485

ABSTRACT

The intricate regulation of chromatin plays a key role in controlling genome architecture and accessibility. Histone lysine methyltransferases regulate chromatin by catalyzing the methylation of specific histone residues but are also hypothesized to have equally important non-catalytic roles. SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation, and is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes suggesting the enzyme likely has uncharacterized non-catalytic activities. To characterize the catalytic and non-catalytic mechanisms SUV420H1 uses to modify chromatin, we determined cryo- EM structures of SUV420H1 complexes with nucleosomes containing histone H2A or its variant H2A.Z. Our structural, biochemical, biophysical, and cellular analyses reveal how both SUV420H1 recognizes its substrate and H2A.Z stimulates its activity, and show that SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from histone octamer. We hypothesize that this detachment increases DNA accessibility to large macromolecular complexes, a prerequisite for DNA replication and repair. We also show that SUV420H1 can promote chromatin condensates, another non-catalytic role that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.

10.
J Mol Biol ; 434(14): 167653, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35659534

ABSTRACT

ATP-dependent chromatin remodelers are essential enzymes that restructure eukaryotic genomes to enable all DNA-based processes. The diversity and complexity of these processes arethe complexity of the enzymes that carry them out, making remodelers a challenging class of molecular motors to study by conventional methods. Here we use a single molecule biophysical assay to overcome some of these challenges, enabling a detailed mechanistic dissection of a paradigmatic remodeler reaction, that of sliding a nucleosome towards the longer DNA linker. We focus on how two motors of a dimeric remodeler coordinate to accomplish such directional sliding. We find that ATP hydrolysis by both motors promotes coordination, suggesting a role for ATP in resolving the competition for directional commitment. Furthermore, we show an artificially constitutive dimer is no more or less coordinated, but is more processive, suggesting a cell could modulate a remodeler's oligomeric state to modulate local chromatin dynamics.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Adenosine Triphosphate , DNA , Hydrolysis , Nucleosomes
11.
Nat Commun ; 13(1): 3525, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725842

ABSTRACT

Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.


Subject(s)
Heterochromatin , Mouse Embryonic Stem Cells , Animals , Chromosomal Instability/genetics , Embryonic Stem Cells , Heterochromatin/genetics , Histones/genetics , Mice
12.
Mol Cell ; 82(11): 2098-2112.e4, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35597239

ABSTRACT

The critical role of the INO80 chromatin remodeling complex in transcription is commonly attributed to its nucleosome sliding activity. Here, we have found that INO80 prefers to mobilize hexasomes over nucleosomes. INO80's preference for hexasomes reaches up to ∼60 fold when flanking DNA overhangs approach ∼18-bp linkers in yeast gene bodies. Correspondingly, deletion of INO80 significantly affects the positions of hexasome-sized particles within yeast genes in vivo. Our results raise the possibility that INO80 promotes nucleosome sliding by dislodging an H2A-H2B dimer, thereby making a nucleosome transiently resemble a hexasome. We propose that this mechanism allows INO80 to rapidly mobilize nucleosomes at promoters and hexasomes within gene bodies. Rapid repositioning of hexasomes that are generated in the wake of transcription may mitigate spurious transcription. More generally, such versatility may explain how INO80 regulates chromatin architecture during the diverse processes of transcription, replication, and repair.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin Assembly and Disassembly , Histones/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Curr Protoc ; 1(5): e109, 2021 May.
Article in English | MEDLINE | ID: mdl-33950570

ABSTRACT

Liquid-liquid phase separation (LLPS) has been invoked as an underlying mechanism involved in the formation and function of several cellular membrane-less compartments. Given the explosion of studies in this field in recent years, it has become essential to converge on clear guidelines and methods to rigorously investigate LLPS and advance our understanding of this phenomenon. Here, we describe basic methods to (1) visualize droplets formed by nucleic acid binding proteins and (2) characterize the liquid-like nature of these droplets under controlled in vitro experimental conditions. We discuss the rationale behind these methods, as well as caveats and limitations. Our ultimate goal is to guide scientists interested in learning how to test for LLPS, while appreciating that the field is evolving rapidly and adjusting constantly to the growing knowledge. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Observing phase-separated condensates by microscopy. Support Protocol: Coating of glass-bottom plates. Basic Protocol 2: Assessing condensate reversibility by changing ionic strength. Alternate Protocol 1: Assessing condensate reversibility by dilution. Alternate Protocol 2: Assessing condensate reversibility by altering temperature. Basic Protocol 3: Quantifying phase separation by centrifugation assay. Basic Protocol 4: Quantifying phase separation by turbidity assay.


Subject(s)
Carrier Proteins , Nucleic Acids , Centrifugation , Chromosomal Proteins, Non-Histone , Osmolar Concentration
16.
Elife ; 102021 03 04.
Article in English | MEDLINE | ID: mdl-33661100

ABSTRACT

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1ß, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1ß. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.


Subject(s)
Chromobox Protein Homolog 5/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA/metabolism , Heterochromatin/metabolism , Cells, Cultured , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Humans , Protein Binding
17.
J Mol Biol ; 433(14): 166876, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33556407

ABSTRACT

Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , Adenosine Triphosphatases/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation , Nucleosomes/metabolism , Transcription, Genetic
18.
J Mol Biol ; 433(12): 166624, 2021 06 11.
Article in English | MEDLINE | ID: mdl-32805219

ABSTRACT

Biological enzymes significantly speed up chemical reactions in living organisms. The complex environment within cells has long been appreciated as a major regulator of enzymatic activities. Recent advances in the rapidly evolving field of biological condensates, which are spontaneously formed by macromolecules through phase separation, suggest new possibilities for how enzymatic reactions may be modulated within cells. Here, we review the latest studies of enzymatic reactions in biological condensates focusing on basic concepts in enzymology and discussing some context-dependent roles of phase separation in regulating biochemical reactions.


Subject(s)
Enzymes/metabolism , Macromolecular Substances/chemistry , Chemical Fractionation , Enzymes/isolation & purification , Gene Expression Regulation, Enzymologic , Humans , Kinetics
19.
Elife ; 92020 12 02.
Article in English | MEDLINE | ID: mdl-33263279

ABSTRACT

Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular 'states' of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across human epigenomic domains. Our analyses suggest that chromatin is comprised of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution and offers up new avenues for modeling and visualizing higher order chromatin structure.


Subject(s)
Chromatin/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , Nucleosomes/genetics , Single Molecule Imaging , Acetylation , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Epigenesis, Genetic , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , K562 Cells , Nucleic Acid Conformation , Nucleosomes/chemistry , Nucleosomes/metabolism , Proof of Concept Study , Protein Conformation , Protein Processing, Post-Translational , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Curr Opin Cell Biol ; 64: 90-96, 2020 06.
Article in English | MEDLINE | ID: mdl-32434105

ABSTRACT

A large portion of the eukaryotic genome is packed into heterochromatin, a versatile platform that is essential to maintain genome stability. Often associated with a compact and transcriptionally repressed chromatin state, heterochromatin was earlier considered a static and locked compartment. However, cumulative findings over the last 17 years have suggested that heterochromatin displays dynamics at different timescales and size scales. These dynamics are thought to be essential for the regulation of heterochromatin. This review illustrates how the key principles underlying heterochromatin structure and function have evolved along the years and summarizes the discoveries that have led to the continuous revision of these principles. Using heterochromatin protein 1-mediated heterochromatin as a context, we discuss a novel paradigm for heterochromatin organization based on two emerging concepts, phase separation and nucleosome structural plasticity. We also examine the broader implications of this paradigm for chromatin organization and regulation beyond heterochromatin.


Subject(s)
Heterochromatin/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Genomic Instability , Humans , Models, Biological , Nucleosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...