Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(15): 156601, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933326

ABSTRACT

Two-component systems with equal concentrations of electrons and holes exhibit nonsaturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality due to recombination. The phenomenon originates in the excess quasiparticle density developing near the edges of the sample due to the compensated Hall effect. The size of the boundary region is of the order of the electron-hole recombination length that is inversely proportional to the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates over the bulk leading to linear magnetoresistance. Our results are relevant for two-and three-dimensional semimetals and narrow band semiconductors including most of the topological insulators.

2.
Phys Rev Lett ; 111(16): 166601, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24182287

ABSTRACT

We report experimental data and theoretical analysis of Coulomb drag between two closely positioned graphene monolayers in a weak magnetic field. Close enough to the neutrality point, the coexistence of electrons and holes in each layer leads to a dramatic increase of the drag resistivity. Away from charge neutrality, we observe nonzero Hall drag. The observed phenomena are explained by decoupling of electric and quasiparticle currents which are orthogonal at charge neutrality. The sign of magnetodrag depends on the energy relaxation rate and geometry of the sample.

3.
Phys Rev Lett ; 110(2): 026601, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383926

ABSTRACT

We study Coulomb drag in graphene near the Dirac point, focusing on the regime of interaction-dominated transport. We establish a novel, graphene-specific mechanism of Coulomb drag based on fast interlayer thermalization, inaccessible by standard perturbative approaches. Using the quantum kinetic equation framework, we derive a hydrodynamic description of transport in double-layer graphene in terms of electric and energy currents. In the clean limit the drag becomes temperature independent. In the presence of disorder the drag coefficient at the Dirac point remains nonzero due to higher-order scattering processes and interlayer disorder correlations. At low temperatures (diffusive regime) these contributions manifest themselves in the peak in the drag coefficient centered at the neutrality point with a magnitude that grows with lowering temperature.

4.
Science ; 316(5821): 99-102, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17412956

ABSTRACT

The Coulomb drag in a system of two parallel layers is the result of electron-electron interaction between the layers. We have observed reproducible fluctuations of the drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed the average drag, giving rise to random changes of the sign of the drag. The fluctuations are found to be much larger than previously expected, and we propose a model that explains their enhancement by considering fluctuations of local electron properties.

5.
Phys Rev Lett ; 95(1): 017206, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16090653

ABSTRACT

We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the crossover between diffusive and ballistic regimes of quantum interference effects occurs at a temperature T*=1/taugamma(E(F)tau)2, where gamma is the parameter associated with the Landau damping of the spin fluctuations, tau is the impurity scattering time, and E(F) is the Fermi energy. For a generic choice of parameters, T* is smaller than the nominal crossover scale 1/tau. In the ballistic quantum critical regime, the conductivity behaves as T1/3.

6.
Phys Rev Lett ; 86(16): 3610-3, 2001 Apr 16.
Article in English | MEDLINE | ID: mdl-11328035

ABSTRACT

We consider mesoscopic fluctuations of Coulomb drag transresistivity between two layers at a Landau level filling factor nu = 1/2 each. We find that, at low temperatures, sample to sample fluctuations exceed both the ensemble average and the corresponding fluctuations at B = 0. At the experimentally relevant temperatures, the variance of the transresistivity is proportional to T(-1/2). We find the dependence of this variance on density and magnetic field to reflect the attachment of two flux quanta to each electron.

SELECTION OF CITATIONS
SEARCH DETAIL
...