Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 6(8): 2588-90, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17037878

ABSTRACT

Conducting polymeric nanostructures have been reported recently, which were produced from polypyrrole (PPy), including hollow nanocapsules, nanofibers, nanoporous membranes, nanowires, and nanofilms. In most cases, new synthetic routes were used aimed at controlling specific properties of these conducting nanostructures at the molecular level. In this communication we present a new chemical route to synthesize polypyrrole-based nanocomposites, in which polyamidoamine (PAMAM) dendrimers encapsulating Au nanoparticles are used as template. The two-step synthesis comprises the reduction of Au nanoparticles inside PAMAM molecules followed by PPy polymerization around the PAMAM-Au nanoparticles. The structure of the core-shell PAMAM-gold@polypyrrole nanospheres comprises a 40 nm PPy shell enclosing a core of 3 nm gold nanoparticles, as revealed by Transmission Electronic Microscopy (TEM). This new, environmentally-friendly approach may be suitable to produce hybrid nanomaterials for applications in catalysis, batteries, sensors, and micro/nanoelectronic devices.


Subject(s)
Gold/chemistry , Nanotechnology/methods , Nanotubes/chemistry , Polymers/chemistry , Pyrroles/chemistry , Dendrimers/chemistry , Drug Delivery Systems , Macromolecular Substances , Materials Testing , Nanoparticles , Particle Size , Spectrophotometry, Ultraviolet , X-Ray Diffraction
2.
J Phys Chem B ; 110(39): 19271-9, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004779

ABSTRACT

The particle size effect observed on the performance of Pt/C electrocatalysts toward the methanol oxidation reaction (MOR) has been investigated with differential electrochemical mass spectrometry (DEMS). The investigation has been conducted under both potentiodynamic and potentiostatic conditions as research on methanol electrochemical oxidation is closely related to interest in direct methanol fuel cells. The particle size effect observed on the MOR is commonly regarded as a reflection of different Pt-CO and Pt-OH bond strengths for different particle sizes. This work focuses mainly on the mechanism of methanol dehydrogenation on platinum which is central to the problem of the optimization of the efficiency of methanol electro-oxidation by favoring the CO(2) formation pathway. It was found that the partitioning of the methanol precursor among the end products on supported platinum nanoparticles is strongly dependent on particle size distribution. Also, it is postulated that the coupling among particles of different sizes via soluble products must be considered in order to understand the particle size effects on the observed trends of product formation. An optimum particle size range for efficiently electro-oxidizing methanol to CO(2) was found between 3 and 10 nm, and loss in efficiency is mostly related to the partial oxidation of methanol to formaldehyde on either too small or too large particles. The possible reasons for these observations are also discussed.

3.
J Phys Chem B ; 110(35): 17478-83, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16942087

ABSTRACT

In this work, we exploit the molecular engineering capability of the layer-by-layer (LbL) method to immobilize layers of gold nanoparticles on indium tin oxide (ITO) substrates, which exhibit enhanced charge transfer and may incorporate mediating redox substances. Polyamidoamine (PAMAM generation 4) dendrimers were used as template/stabilizers for Au nanoparticle growth, with PAMAM-Au nanoparticles serving as cationic polyelectrolytes to produce LbL films with poly(vinylsulfonic acid) (PVS). The cyclic voltammetry (CV) of ITO-PVS/PAMAM-Au electrodes in sulfuric acid presented a redox pair attributed to Au surface oxide formation. The maximum kinetics adsorption is first-order, 95% of the current being achieved after only 5 min of adsorption. Electron hopping can be considered as the charge transport mechanism between the PVS/PAMAM-Au layers within the LbL films. This charge transport was faster than that for nonmodified electrodes, shown by employing hexacyanoferrate(III) as the surface reaction marker. Because the enhanced charge transport may be exploited in biosensors requiring redox mediators, we demonstrate the formation of Prussian blue (PB) around the Au nanoparticles as a proof of principle. PAMAM-Au@PB could be easily prepared by electrodeposition, following the ITO-PVS/ PAMAM-Au LbL film preparation procedure. Furthermore, the coverage of Au nanoparticles by PB may be controlled by monitoring the oxidation current.

4.
Environ Sci Technol ; 39(14): 5385-9, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16082970

ABSTRACT

Humic acids (HAs), naturally occurring biomacromolecules, were incorporated into nanostructured polymeric films using the layer-by-layer (LbL) technique, in which HA layers were alternated with layers of poly(allylamine hydrochloride) (PAH). Atomic force microscopy (AFM) revealed very smooth films, with mean roughness varying from 0.89 to 1.19 nm for films containing 5 and 15 PAH/HA bilayers, respectively. The films displayed electroactivity, with the presence of only one reduction peak at ca. 0.675 V (vs Ag/AgCl). Such a well-defined electroactivity allowed the films to be used as highly sensitive pesticide sensors, with detection of pentachlorophenol (PCP) in solutions at concentrations as low as 10(-9) mol L(-1).


Subject(s)
Biosensing Techniques , Environmental Monitoring/methods , Humic Substances , Pentachlorophenol/analysis , Pesticides/analysis , Electrochemistry , Environmental Pollutants/analysis , Nanostructures , Polymers , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL