Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
2.
Evol Appl ; 17(3): e13667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463750

ABSTRACT

Modern fisheries management strives to balance opposing goals of protection for weak stocks and opportunity for harvesting healthy stocks. Test fisheries can aid management of anadromous fishes if they can forecast the strength and timing of an annual run with adequate time to allow fisheries planning. Integration of genetic stock identification (GSI) can further maximize utility of test fisheries by resolving run forecasts into weak- and healthy-stock subcomponents. Using 5 years (2017-2022) of test fishery data, our study evaluated accuracy, resolution, and lead time of predictions for stock-specific run timing and abundance of Columbia River spring Chinook salmon (Oncorhynchus tshawytscha). We determined if this test fishery (1) could use visual stock identification (VSI) to forecast at the coarse stock resolution (i.e., classification of "lower" vs. "upriver" stocks) upon which current management is based and (2) could be enhanced with GSI to forecast at higher stock resolution. VSI accurately identified coarse stocks (83.3% GSI concordance), and estimated a proxy for abundance (catch per unit effort, CPUE) of the upriver stock in the test fishery that was correlated (R 2 = 0.90) with spring Chinook salmon abundance at Bonneville dam (Rkm 235). Salmon travel rates (~8.6 Rkm/day) provided predictions with 2-week lead time prior to dam passage. Importantly, GSI resolved this predictive ability as finely as the hatchery broodstock level. Lower river stock CPUE in the test fishery was correlated with abundance at Willamette Falls (Rkm 196, R 2 = 0.62), but could not be as finely resolved as achieved for upriver stocks. We described steps to combine VSI and GSI to provide timely in-season information and with prediction accuracy of ~12.4 mean absolute percentage error and high stock resolution to help plan Columbia River mainstem fisheries.

3.
Evol Appl ; 17(3): e13680, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505217

ABSTRACT

Genetic monitoring of Pacific salmon in the Columbia River basin provides crucial information to fisheries managers that is otherwise challenging to obtain using traditional methods. Monitoring programs such as genetic stock identification (GSI) and parentage-based tagging (PBT) involve genotyping tens of thousands of individuals annually. Although rare, these large sample collections inevitably include misidentified species, which exhibit low genotyping success on species-specific Genotyping-in-Thousands by sequencing (GT-seq) panels. For laboratories involved in large-scale genotyping efforts, diagnosing non-target species and reassigning them to the appropriate monitoring program can be costly and time-consuming. To address this problem, we identified 19 primer pairs that exhibit consistent cross-species amplification among salmonids and contain 51 species informative variants. These genetic markers reliably discriminate among 11 salmonid species and two subspecies of Cutthroat Trout and have been included in species-specific GT-seq panels for Chinook Salmon, Coho Salmon, Sockeye Salmon, and Rainbow Trout commonly used for Pacific salmon genetic monitoring. The majority of species-informative amplicons (16) were newly identified from the four existing GT-seq panels, thus demonstrating a low-cost approach to species identification when using targeted sequencing methods. A species-calling script was developed that is tailored for routine GT-seq genotyping pipelines and automates the identification of non-target species. Following extensive testing with empirical and simulated data, we demonstrated that the genetic markers and accompanying script accurately identified species and are robust to missing genotypic data and low-frequency, shared polymorphisms among species. Finally, we used these tools to identify Coho Salmon incidentally caught in the Columbia River Chinook Salmon sport fishery and used PBT to determine their hatchery of origin. These molecular and computing resources provide a valuable tool for Pacific salmon conservation in the Columbia River basin and demonstrate a cost-effective approach to species identification for genetic monitoring programs.

4.
Evol Appl ; 17(2): e13610, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343774

ABSTRACT

Genetic stock identification (GSI) is an important fisheries management tool to identify the origin of fish harvested in mixed stock fisheries. Periodic updates of genetic baselines can improve performance via the addition of unsampled or under-sampled populations and the inclusion of more informative markers. We used a combination of baselines to evaluate how population representation, marker number, and marker type affected the performance and accuracy of genetic stock assignments (self-assignment, bias, and holdout group tests) for steelhead (Oncorhynchus mykiss) in the Snake River basin. First, we compared the performance of an existing genetic baseline with a newly developed one which had a reduced number of individuals from more populations using the same set of markers. Self-assignment rates were significantly higher (p < 0.001; +5.4%) for the older, larger baseline, bias did not differ significantly between the two, but there was a significant improvement in performance for the new baseline in holdout results (p < 0.001; mean increase of 25.0%). Second, we compared the performance of the new baseline with increased numbers of genetic markers (~2x increase of single-nucleotide polymorphisms; SNPs) for the same set of baseline individuals. In this comparison, results produced significantly higher rates of self-assignment (p < 0.001; +9.7%) but neither bias nor leave-one-out were significantly affected. Third, we compared 334 SNPs versus opportunistically discovered microhaplotypes from the same amplicons for the new baseline, and showed the latter produced significantly higher rates of self-assignment (p < 0.01; +2.6%), similar bias, but slightly lower holdout performance (-0.1%). Combined, we show the performance of genetic baselines can be improved via representative and efficient sampling, that increased marker number consistently improved performance over the original baseline, and that opportunistic discovery of microhaplotypes can lead to small improvements in GSI performance.

5.
Evol Appl ; 17(2): e13622, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343780

ABSTRACT

Age-at-maturity and iteroparity are two life history variations of steelhead trout (Oncorhynchus mykiss) that are believed to increase population resilience and stability. While repeat-spawning individuals are thought to have historically made up a substantial portion of the reproductive population in the Columbia River and the majority of females still attempt outmigration as kelts, return rates of repeat-spawner are low throughout the basin and below 1% for the furthest migrating stocks. Notably, outmigrating adults exhibit variation in rematuration phenology, displaying either "consecutive" (reproduce immediately the following season) or "skip" (delay spawning for future seasons) spawning patterns. Here, we use low coverage whole genome sequencing of consecutive versus skip spawning female Columbia River steelhead from two populations to test for genomic differences between these two iteroparous phenotypes. We identified genomic regions on several chromosomes which were associated with the phenology of iteroparity, including a region on chromosome 25 containing two genes, estradiol receptor beta (ERß) and glycoprotein hormone beta-5 (GPHB5), which, in mammals, are estrogen-sensitive and expressed in reproductive tissues. Allele frequencies in this ERß/GPHB5 region differed among female steelhead of different age at maturity, but not males. These genes also shared an island of linkage disequilibrium with the SIX6 gene, 600Kbp away on the same chromosome, a region of known association with age-at-maturity. These observations contribute to growing evidence that age-at-maturity and the phenology of iteroparity are determined by overlapping physiological processes and genetic pathways.

6.
Evol Appl ; 17(2): e13626, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343781

ABSTRACT

With the discovery of a major effect region (GREB1L, ROCK1) for adult migration timing in genomes of both Chinook Salmon and Steelhead, several subsequent studies have investigated the effect size and distribution of early and late migration alleles among populations in the Columbia River. Here, we synthesize the results of these studies for the major lineages of Chinook Salmon and Steelhead that include highly distinct groups in the interior Columbia River that exhibit atypical life histories from most coastal lineage populations of these two species. Whole-genome studies with high marker density have provided extensive insight into SNPs most associated with adult migration timing, and suites of markers for each species have been genotyped in large numbers of individuals to further validate phenotypic effects. For Steelhead, the largest phenotypic effect sizes have been observed in the coastal lineage (36% of variation for passage timing at Bonneville Dam; 43% of variation for tributary arrival timing) compared to the inland lineage (7.5% of variation for passage timing at Bonneville Dam; 8.4% of variation for tributary arrival timing) that overwinter in freshwater prior to spawning. For Chinook Salmon, large effect sizes have been observed in all three lineages for multiple adult migration phenotypes (Coastal lineage: percentage of variation of 27.9% for passage timing at Bonneville Dam, 28.7% for arrival timing for spawning; Interior ocean type: percentage of variation of 47.6% for passage timing at Bonneville Dam, 39.6% for tributary arrival timing, 77.9% for arrival timing for spawning; Interior stream type: percentage of variation of 35.3% for passage at Bonneville Dam, 9.8% for tributary arrival timing, 4.7% for arrival timing for spawning). Together, these results have extended our understanding of genetic variation associated with life history diversity in distinct populations of the Columbia River, however, much research remains necessary to determine the causal mechanism for this major effect region on migration timing in these species.

7.
Evol Appl ; 17(2): e13607, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343782

ABSTRACT

By the 1980s, after decades of declining numbers in the mid-1900s, Coho salmon (Oncorhynchus kisutch) were considered extirpated from the interior Columbia River. In the mid-1990s, the Confederated Tribes of the Umatilla Indian Reservation, the Confederated Tribes and Bands of the Yakama Nation, and the Nez Perce Tribe began successful reintroduction programs of Coho salmon upstream of Bonneville Dam, but which were initially sourced from lower Columbia River hatcheries. Here we present the first Coho salmon parentage-based tagging (PBT) baseline from seven hatchery programs located in the interior Columbia River basin, and two sites at or downstream of Bonneville Dam, composed of over 32,000 broodstock samples. Analyses of baseline collections revealed that genetic structure followed a temporal pattern based on 3-year broodlines rather than geographic location or stocking history. Across hatchery programs, similar levels of genetic diversity was present. The PBT baseline provided multiple direct applications such as identification of origin for Coho salmon collected in a mixed stock at Priest Rapids Dam and the detection of the proportion and distribution of hatchery-origin fish on the spawning grounds in the Methow River basin. The PBT baseline for Coho salmon is freely available for use and can be downloaded from FishGen.net.

8.
Evol Appl ; 17(2): e13663, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390377

ABSTRACT

Climate-induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non-native rainbow trout has increased in recent decades due, in part, to climate-driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate-induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non-native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, "MaxHR", and temperature at arrhythmia, "ArrTemp") during laboratory trials with increasing water temperatures (10-28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype-by-environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer-adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate.

9.
Evol Appl ; 17(1): e13623, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283605

ABSTRACT

Multiple evolutionary processes influence genome-wide allele frequencies and quantifying effects of genetic drift, and multiple forms of selection remain challenging in natural populations. Here, we investigate variation at major effect loci in contrast to patterns of neutral drift across a wide collection of steelhead (Oncorhynchus mykiss) populations that have declined in abundance due to anthropogenic impacts. Whole-genome resequencing of 74 populations of steelhead revealed genome-wide patterns (~8 million SNPs) consistent with expected neutral population structure. However, allelic variation at major effect loci associated with adult migration timing (chromosome 28: GREB1L/ROCK1) and age at maturity (chromosome 25: SIX6) reflected how selection has acted on phenotypic variation in contrast with neutral structure. Variation at major effect loci was influenced by evolutionary processes with differing signals between the strongly divergent Coastal and Inland lineages, while allele frequencies within and among populations within the Inland lineage have been driven by local natural selection as well as recent anthropogenic influences. Recent anthropogenic effects appeared to have influenced the frequency of major effect alleles including artificial selection for specific traits in hatchery stocks with subsequent gene flow into natural populations. Selection from environmental factors at various scales has also likely influenced variation for major effect alleles. These results reveal evolutionary mechanisms that influence allele frequencies at major effect loci that are critical for conservation of phenotypic traits and life history variation of this protected species.

10.
Mol Ecol Resour ; 24(2): e13893, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966259

ABSTRACT

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.


Subject(s)
Conservation of Natural Resources , Genomics , Humans , Conservation of Natural Resources/methods , Biodiversity , Genome
11.
Mol Ecol Resour ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37921673

ABSTRACT

Whole-genome sequencing data allow survey of variation from across the genome, reducing the constraint of balancing genome sub-sampling with estimating recombination rates and linkage between sampled markers and target loci. As sequencing costs decrease, low-coverage whole-genome sequencing of pooled or indexed-individual samples is commonly utilized to identify loci associated with phenotypes or environmental axes in non-model organisms. There are, however, relatively few publicly available bioinformatic pipelines designed explicitly to analyse these types of data, and fewer still that process the raw sequencing data, provide useful metrics of quality control and then execute analyses. Here, we present an updated version of a bioinformatics pipeline called PoolParty2 that can effectively handle either pooled or indexed DNA samples and includes new features to improve computational efficiency. Using simulated data, we demonstrate the ability of our pipeline to recover segregating variants, estimate their allele frequencies accurately, and identify genomic regions harbouring loci under selection. Based on the simulated data set, we benchmark the efficacy of our pipeline with another bioinformatic suite, angsd, and illustrate the compatibility and complementarity of these suites using angsd to generate genotype likelihoods as input for identifying linkage outlier regions using alignment files and variants provided by PoolParty2. Finally, we apply our updated pipeline to an empirical dataset of low-coverage whole genomic data from population samples of Columbia River steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic impacts of decades of artificial selection in a prominent hatchery stock. Thus, we not only demonstrate the utility of PoolParty2 for genomic studies that combine sequencing data from multiple individuals, but also illustrate how it compliments other bioinformatics resources such as angsd.

12.
Ecol Evol ; 13(5): e9961, 2023 May.
Article in English | MEDLINE | ID: mdl-37181203

ABSTRACT

We call for journals to commit to requiring open data be archived in a format that will be simple and clear for readers to understand and use. If applied consistently, these requirements will allow contributors to be acknowledged for their work through citation of open data, and facilitate scientific progress.

13.
Cell Rep ; 42(3): 112263, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930644

ABSTRACT

Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.


Subject(s)
Petromyzon , Animals , Petromyzon/genetics , Chromosomes/genetics , DNA/genetics , Genome , Vertebrates/genetics , Germ Cells , Evolution, Molecular , Phylogeny
14.
Mol Ecol ; 32(11): 2818-2834, 2023 06.
Article in English | MEDLINE | ID: mdl-36811385

ABSTRACT

The distribution of ecotypic variation in natural populations is influenced by neutral and adaptive evolutionary forces that are challenging to disentangle. This study provides a high-resolution portrait of genomic variation in Chinook salmon (Oncorhynchus tshawytscha) with emphasis on a region of major effect for ecotypic variation in migration timing. With a filtered data set of ~13 million single nucleotide polymorphisms (SNPs) from low-coverage whole genome resequencing of 53 populations (3566 barcoded individuals), we contrasted patterns of genomic structure within and among major lineages and examined the extent of a selective sweep at a major effect region underlying migration timing (GREB1L/ROCK1). Neutral variation provided support for fine-scale structure of populations, while allele frequency variation in GREB1L/ROCK1 was highly correlated with mean return timing for early and late migrating populations within each of the lineages (r2  = .58-.95; p < .001). However, the extent of selection within the genomic region controlling migration timing was much narrower in one lineage (interior stream-type) compared to the other two major lineages, which corresponded to the breadth of phenotypic variation in migration timing observed among lineages. Evidence of a duplicated block within GREB1L/ROCK1 may be responsible for reduced recombination in this portion of the genome and contributes to phenotypic variation within and across lineages. Lastly, SNP positions across GREB1L/ROCK1 were assessed for their utility in discriminating migration timing among lineages, and we recommend multiple markers nearest the duplication to provide highest accuracy in conservation applications such as those that aim to protect early migrating Chinook salmon. These results highlight the need to investigate variation throughout the genome and the effects of structural variants on ecologically relevant phenotypic variation in natural species.


Subject(s)
Genetic Variation , Salmon , Humans , Animals , Genetic Variation/genetics , Alleles , Salmon/genetics , Gene Frequency/genetics , Genomics , rho-Associated Kinases/genetics
15.
Mol Ecol ; 32(3): 539-541, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36453162

ABSTRACT

The mechanisms underlying local adaptation, where populations evolve traits that confer advantages to the local environment, is a central topic for understanding evolution in natural systems. Conservation goals for species at risk often include defining population boundaries by identifying gene diversity, genetic differentiation, and adaptation to local environments. In this issue of Molecular Ecology, Rougemont et al. (2022) combine genome-wide SNP data with an extensive set of landscape variables to study the genomic mechanisms of local adaptation in the entire North American range of Coho salmon (Oncorhynchus kisutch), representing one of the largest studies of its kind. Migration distance, defined as the distance adult Coho salmon migrate from the ocean to their freshwater spawning ground, was found to be the primary factor driving local adaptation in this species. With climatic changes altering flow regimes and therefore the success of Coho salmon to return to spawning grounds, understanding environmental drivers and the genomic basis for migration is essential in the conservation of anadromous salmonids.


Subject(s)
Oncorhynchus kisutch , Animals , Oncorhynchus kisutch/genetics , Genome , Adaptation, Physiological/genetics , Acclimatization , Fresh Water
16.
Mol Ecol Resour ; 23(1): 1-9, 2023 01.
Article in English | MEDLINE | ID: mdl-36468793
17.
Mol Ecol ; 32(4): 800-818, 2023 02.
Article in English | MEDLINE | ID: mdl-36478624

ABSTRACT

Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Acclimatization/genetics , Genome/genetics , Adaptation, Physiological/genetics , Gene Frequency/genetics , Polymorphism, Single Nucleotide/genetics
18.
J Hered ; 113(2): 121-144, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35575083

ABSTRACT

The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.


Subject(s)
Oncorhynchus mykiss , Salmon , Alleles , Animals , Biological Evolution , Endangered Species , Oncorhynchus mykiss/genetics , Salmon/genetics
19.
Front Genet ; 13: 795850, 2022.
Article in English | MEDLINE | ID: mdl-35368705

ABSTRACT

Anadromous fish experience physiological modifications necessary to migrate between vastly different freshwater and marine environments, but some species such as Oncorhynchus mykiss demonstrate variation in life history strategies with some individuals remaining exclusively resident in freshwater, whereas others undergo anadromous migration. Because there is limited understanding of genes involved in this life history variation across populations of this species, we evaluated the genomic difference between known anadromous (n = 39) and resident (n = 78) Oncorhynchus mykiss collected from the Klickitat River, WA, USA, with whole-genome resequencing methods. Sequencing of these collections yielded 5.64 million single-nucleotide polymorphisms that were tested for significant differences between resident and anadromous groups along with previously identified candidate gene regions. Although a few regions of the genome were marginally significant, there was one region on chromosome Omy12 that provided the most consistent signal of association with anadromy near two annotated genes in the reference assembly: COP9 signalosome complex subunit 6 (CSN6) and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3). Previously identified candidate genes for anadromy within the inversion region of chromosome Omy05 in coastal steelhead and rainbow trout were not informative for this population as shown in previous studies. Results indicate that the significant region on chromosome Omy12 may represent a minor effect gene for male anadromy and suggests that this life history variation in Oncorhynchus mykiss is more strongly driven by other mechanisms related to environmental rearing such as epigenetic modification, gene expression, and phenotypic plasticity. Further studies into regulatory mechanisms of this trait are needed to understand drivers of anadromy in populations of this protected species.

20.
Evol Appl ; 15(1): 3-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35126645

ABSTRACT

The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...