Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(2): e32561, 2012.
Article in English | MEDLINE | ID: mdl-22393415

ABSTRACT

The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , src-Family Kinases/metabolism , Alleles , Amino Acid Sequence , Cell Line, Tumor , Dimerization , HIV Infections , Humans , Molecular Conformation , Molecular Sequence Data , Proto-Oncogene Proteins c-hck/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity , Virus Replication
2.
J Mol Biol ; 410(5): 1008-22, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21763503

ABSTRACT

Human immunodeficiency virus-1 (HIV-1) has evolved a cunning mechanism to circumvent the antiviral activity of the APOBEC3 family of host cell enzymes. HIV-1 Vif [viral (also called virion) infectivity factor], one of several HIV accessory proteins, targets APOBEC3 proteins for proteasomal degradation and downregulates their expression at the mRNA level. Despite the importance of Vif for HIV-1 infection, there is little conformational data on Vif alone or in complex with other cellular factors due to incompatibilities with many structural techniques and difficulties in producing suitable quantities of the protein for biophysical analysis. As an alternative, we have turned to hydrogen exchange mass spectrometry (HX MS), a conformational analysis method that is well suited for proteins that are difficult to study using X-ray crystallography and/or NMR. HX MS was used to probe the solution conformation of recombinant full-length HIV-1 Vif. Vif specifically interacted with the previously identified binding partner Hck and was able to cause kinase activation, suggesting that the Vif studied by HX MS retained a biochemically competent conformation relevant to Hck interaction. HX MS analysis of Vif alone revealed low deuteration levels in the N-terminal portion, indicating that this region contained structured or otherwise protected elements. In contrast, high deuteration levels in the C-terminal portion of Vif indicated that this region was likely unstructured in the absence of cellular interacting proteins. Several regions within Vif displayed conformational heterogeneity in solution, including the APOBEC3G/F binding site and the HCCH zinc finger. Taken together, these HX MS results provide new insights into the solution conformation of Vif.


Subject(s)
HIV-1/chemistry , vif Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Motifs , Amino Acid Sequence , Biophysical Phenomena/drug effects , Deuterium Exchange Measurement , Enzyme Activation/drug effects , HIV-1/drug effects , Humans , Mass Spectrometry , Models, Biological , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-hck/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solutions , Zinc/pharmacology , vif Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...