Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3182, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30816194

ABSTRACT

BiFeO3 (BFO) nanoparticles (NPs) were synthesized using the sol-gel method at different calcination temperatures from 400 °C to 600 °C. XRD studies have confirmed that all BFO NPs show distorted rhombohedral crystals that match the R3c space group. We found evidence of local structural strain that develops with increasing particle size as suggested by TEM and Raman spectroscopy measurements. Magnetic measurements suggest that NPs have two distinct regimes: a ferromagnetic-like one at low temperatures and a superparamagnetic-like one at room temperature. The crossover temperature increases with NPs size, suggesting a size-dependent blocking magnetic regime. Similarly, local piezoelectric measurements at room temperature in single NP have confirmed a ferroelectric order with a NP size-dependent d33 coefficient. An analysis of both the ferroelectric and the magnetic results suggest that ferromagnetism and ferroelectricity coexist at room temperature in NPs. Our results lead to the possibility of tailoring the ferroic order in multifunctional materials by means of NP size.

2.
Nature ; 538(7624): 219-221, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27669023

ABSTRACT

Flexoelectricity is a property of all dielectric materials whereby they polarize in response to deformation gradients such as those produced by bending. Although it is generally thought of as a property of dielectric insulators, insulation is not a formal requirement: in principle, semiconductors can also redistribute their free charge in response to strain gradients. Here we show that bending a semiconductor not only generates a flexoelectric-like response, but that this response can in fact be much larger than in insulators. By doping single crystals of wide-bandgap oxides to increase their conductivity, their effective flexoelectric coefficient was increased by orders of magnitude. This large response can be explained by a barrier-layer mechanism that remains important even at the macroscale, where conventional (insulator) flexoelectricity otherwise tends to be small. Our results open up the possibility of using semiconductors as active ingredients in electromechanical transducer applications.

3.
Phys Rev Lett ; 115(3): 037601, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230825

ABSTRACT

The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above T(C) and up to T*≈200-225 °C. Above T*, however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

4.
Phys Rev Lett ; 106(23): 236101, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21770522

ABSTRACT

A surface layer ("skin") different from the bulk was found in single crystals of BiFeO(3). Impedance analysis and grazing incidence x-ray diffraction reveal a phase transition at T(*)∼275±5 °C that is confined within the surface of BiFeO(3). X-ray photoelectron spectroscopy and refraction-corrected x-ray diffraction as a function of incidence angle and photon wavelength indicate a reduced electron density and an elongated out-of-plane lattice parameter within a few nanometers of the surface. The skin will affect samples with large surface to volume ratios, as well as devices that rely on interfacial coupling such as exchange bias.

SELECTION OF CITATIONS
SEARCH DETAIL
...