Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37766345

ABSTRACT

Whole-genome sequencing (WGS) is becoming an essential tool to characterize the genomes of avian reovirus (ARV), a viral disease of economic significance to poultry producers. The current strategies and procedures used to obtain the complete genome sequences of ARV isolates are not cost-effective because most of the genetic material data resulting from next-generation sequencing belong to the host and cannot be used to assemble the viral genome. The purpose of this study was to develop a workflow to enrich the ARV genomic content in a sample before subjecting it to next-generation sequencing (NGS). Herein, we compare four different ARV purification and enrichment approaches at the virion, RNA and cDNA levels to determine which treatment or treatment combination would provide a higher proportion of ARV-specific reads after WGS. Seven ARV isolates were subjected to different combinations of virion purification via ultracentrifugation in sucrose density gradient or Capto Core 700 resin with or without a subsequent Benzonase treatment, followed by a chicken rRNA depletion step after RNA extraction and a final ARV cDNA amplification step using a single-primer amplification assay. Our results show that the combination of Capto Core 700 resin, Chicken rRNA depletion and cDNA amplification is the most cost-effective strategy to obtain ARV whole genomes after short-read sequencing.

2.
Animals (Basel) ; 12(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35565598

ABSTRACT

R. equi is an important veterinary pathogen that takes the lives of many foals every year. With the emergence and spread of MDR R. equi to current antimicrobial treatment, new tools that can provide a fast and accurate diagnosis of the disease and antimicrobial resistance profile are needed. Here, we have developed and analytically validated a multiplex qPCR for the simultaneous detection of R. equi and related macrolide resistance genes in equine respiratory samples. The three sets of oligos designed in this study to identify R. equi housekeeping gene choE and macrolide resistance genes erm(46) and erm(51) showed high analytic sensitivity with a limit of detection (LOD) individually and in combination below 12 complete genome copies per PCR reaction, and an amplification efficiency between 90% and 147%. Additionally, our multiplex qPCR shows high specificity in in-silico analysis. Furthermore, it did not present any cross-reaction with normal flora from the equine respiratory tract, nor commonly encountered respiratory pathogens in horses or other genetically close organisms. Our new quantitative PCR is a trustable tool that will improve the speed of R. equi infection diagnosis, as well as helping in treatment selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...