Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 143(3): 334-358, 2017 11.
Article in English | MEDLINE | ID: mdl-28801915

ABSTRACT

Idiopathic Parkinson's disease and manganese-induced atypical parkinsonism are characterized by movement disorder and nigrostriatal pathology. Although clinical features, brain region involved and responsiveness to levodopa distinguish both, differences at the neuronal level are largely unknown. We studied the morphological, neurophysiological and molecular differences in dopaminergic neurons exposed to the Parkinson's disease toxin 1-methyl-4-phenylpyridinium ion (MPP+ ) and manganese (Mn), followed by validation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Mn mouse models. Morphological analysis highlighted loss of neuronal processes in the MPP+ and not the Mn model. Cellular network dynamics of dopaminergic neurons characterized by spike frequency and inter-spike intervals indicated major neuronal population (~ 93%) with slow discharge rates (0-5 Hz). While MPP+ exposure suppressed the firing of these neurons, Mn neither suppressed nor elevated the neuronal activity. High-throughput transcriptomic analysis revealed up-regulation of 694 and 603 genes and down-regulation of 428 and 255 genes in the MPP+ and Mn models respectively. Many differentially expressed genes were unique to either models and contributed to neuroinflammation, metabolic/mitochondrial function, apoptosis and nuclear function, synaptic plasticity, neurotransmission and cytoskeleton. Analysis of the Janus kinase-signal transducer and activator of transcription pathway with implications for neuritogenesis and neuronal proliferation revealed contrasting profile in both models. Genome-wide DNA methylomics revealed differences between both models and substantiated the epigenetic basis of the difference in the Janus kinase-signal transducer and activator of transcription pathway. We conclude that idiopathic Parkinson's disease and atypical parkinsonism have divergent neurotoxicological manifestation at the dopaminergic neuronal level with implications for pathobiology and evolution of novel therapeutics. Cover Image for this issue: doi. 10.1111/jnc.13821.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Dopaminergic Neurons/drug effects , Gene Expression Regulation/drug effects , Manganese/toxicity , Neurotoxins/toxicity , Action Potentials/drug effects , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Cell Line, Transformed , Cell Survival/drug effects , DNA Methylation/drug effects , Dopaminergic Neurons/cytology , Dopaminergic Neurons/ultrastructure , L-Lactate Dehydrogenase/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Neural Networks, Computer , Rats , Signal Transduction/drug effects , Transcriptome/drug effects , Transcriptome/physiology , Tyrosine 3-Monooxygenase/metabolism
2.
Front Mol Neurosci ; 10: 67, 2017.
Article in English | MEDLINE | ID: mdl-28367113

ABSTRACT

Sleep disorders are associated with cognitive impairment. Selective rapid eye movement sleep (REMS) deprivation (REMSD) alters several physiological processes and behaviors. By employing NGS platform we carried out transcriptomic analysis in brain samples of control rats and those exposed to REMSD. The expression of genes involved in chromatin assembly, methylation, learning, memory, regulation of synaptic transmission, neuronal plasticity and neurohypophysial hormone synthesis were altered. Increased transcription of BMP4, DBH and ATP1B2 genes after REMSD supports our earlier findings and hypothesis. Alteration in the transcripts encoding histone subtypes and important players in chromatin remodeling was observed. The mRNAs which transcribe neurotransmitters such as OXT, AVP, PMCH and LNPEP and two small non-coding RNAs, namely RMRP and BC1 were down regulated. At least some of these changes are likely to regulate REMS and may participate in the consequences of REMS loss. Thus, the findings of this study have identified key epigenetic regulators and neuronal plasticity genes associated to REMS and its loss. This analysis provides a background and opens up avenues for unraveling their specific roles in the complex behavioral network particularly in relation to sustained REMS-loss associated changes.

3.
Chem Biol Drug Des ; 88(1): 5-16, 2016 07.
Article in English | MEDLINE | ID: mdl-26850820

ABSTRACT

Human DNA methyltransferase1 (hDNMT1) is responsible for preserving DNA methylation patterns that play important regulatory roles in differentiation and development. Misregulation of DNA methylation has thus been linked to many syndromes, life style diseases, and cancers. Developing specific inhibitors of hDNMT1 is an important challenge in the area since the currently targeted cofactor and substrate binding site share structural features with various proteins. In this work, we generated a structural model of the active form of hDNMT1 and identified that the 5-methylcytosine (5-mC) binding site of the hDNMT1 is structurally unique to the protein. This site has been previously demonstrated to be critical for methylation activity. We further performed multiple nanosecond time scale atomistic molecular dynamics simulations of the structural model followed by virtual screening of the Asinex database to identify inhibitors targeting the 5-mC site. Two compounds were discovered that inhibited hDNMT1 in vitro, one of which also showed inhibition in vivo corroborating the screening procedure. This study thus identifies and attempts to validate for the first time a unique site of hDNMT1 that could be harnessed for rationally designing highly selective and potent hypomethylating agents.


Subject(s)
Antineoplastic Agents , DNA (Cytosine-5-)-Methyltransferases , Enzyme Inhibitors , Models, Chemical , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , Drug Screening Assays, Antitumor/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Humans , MCF-7 Cells
4.
J Biosci ; 38(5): 917-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24296895

ABSTRACT

White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. Identification of host cellular proteins interacting with WSSV will help in unravelling the repertoire of host proteins involved in WSSV infection. In this study, we have employed one-dimensional and two-dimension virus overlay protein binding assay (VOPBA) followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the host proteins of Penaeus monodon that could interact with WSSV. The VOPBA results suggest that WSSV interacted with housekeeping proteins such as heat shock protein 70, ATP synthase subunit beta, phosphopyruvate hydratase, allergen Pen m 2, glyceraldehyde-3-phosphate dehydrogenase, sarcoplasmic calcium-binding protein, actin and 14-3-3-like protein. Our findings suggest that WSSV exploits an array of housekeeping proteins for its transmission and propagation in P. monodon.


Subject(s)
Arthropod Proteins/metabolism , Penaeidae/virology , White spot syndrome virus 1/physiology , 14-3-3 Proteins/metabolism , Actins/metabolism , Animals , Calcium-Binding Proteins/metabolism , Genes, Essential , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions , Mitochondrial Proton-Translocating ATPases/metabolism , Penaeidae/genetics , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL
...