Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33532800

ABSTRACT

COVID-19 testing is not accessible for millions during this pandemic despite our best efforts. Without greatly expanded testing of asymptomatic individuals, contact tracing and subsequent isolation of spreaders remains as a means for control. In an effort to increase RT-PCR assay testing for the presence of the novel beta-coronavirus SARS-CoV-2 as well as improve sample collection safety, GenTegra LLC has introduced two products for saliva collection and viral RNA stabilization: GTR-STM™ (GenTegra Saliva Transport Medium) and GTR-STMdk™ (GenTegra Saliva Transport Medium Direct to PCR). Both products contain a proprietary formulation based on GenTegra's novel "Active Chemical Protection™" (ACP) technology that gives non-dilutive, error-free saliva sample collection using RNA stabilization chemicals already dried in the collection tube. GTR-STM can be used for safer saliva-based sample collection at home (or at a test site). Following saliva collection, the sample-containing GTR-STM can be kept at ambient temperature during shipment to an authorized CLIA lab for analysis. SARS-CoV-2 viral RNA in GTR-STM is stable for over a month at ambient temperature, easily surviving the longest transit times from home to lab. GTR-STM enhances patient comfort, convenience, compliance and reduces infectious virus exposure to essential medical and lab professionals. Alternatively, the GTR-STMdk direct-into-PCR product can be used to improve lab throughput and reduce reagent costs for saliva sample collection and testing at any lab site with access to refrigeration. GTR-STMdk reduces lab process time by 25% and reagent costs by 30% compared to other approaches. Since GTR-STMdk retains SARS-CoV-2 viral RNA stability for three days at ambient temperature, it is optimized for lab test site rather than at home saliva collection. SARS-COV-2 viral RNA levels as low as 0.4 genome equivalents/uL are detected in saliva samples using GTR-STMdk. The increased sensitivity of SARS-CoV-2 detection can expand COVID-19 testing to include asymptomatic individuals using pooled saliva. ONE SENTENCE SUMMARY: GTR-STM and Direct-into-PCR GTR-STMdk offer substantive improvements in SARS-CoV-2 viral RNA stability, safety, and RT-PCR process efficiency for COVID-19 testing by using a non-dilutive saliva sample collection system for individuals at home or onsite respectively.

2.
Anal Chem ; 80(6): 1854-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18278951

ABSTRACT

The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused-silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil-phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment and will be useful in viral discovery and gene-profiling applications.


Subject(s)
Reverse Transcriptase Polymerase Chain Reaction/methods , Base Sequence , DNA Primers , Microfluidics , Spectrometry, Fluorescence
3.
Mol Cell Probes ; 19(2): 137-44, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15680215

ABSTRACT

We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species-specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high-throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3000 individual data points within a single 8-h shift for approximately $4.00 material costs per environmental sample in a 10-plexed assay.


Subject(s)
Bacillus anthracis/genetics , Brucella melitensis/genetics , DNA, Bacterial/genetics , Francisella tularensis/genetics , Yersinia pestis/genetics , Bacillus anthracis/isolation & purification , Bioterrorism , Brucella melitensis/isolation & purification , DNA Primers , DNA Probes/genetics , DNA, Bacterial/isolation & purification , Francisella tularensis/isolation & purification , Microspheres , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Spores, Bacterial/genetics , Spores, Bacterial/isolation & purification , Yersinia pestis/isolation & purification
4.
Anal Chem ; 77(1): 284-9, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15623307

ABSTRACT

The autonomous pathogen detection system (APDS) is an automated, podium-sized instrument that continuously monitors the air for biological threat agents (bacteria, viruses, and toxins). The system has been developed to warn of a biological attack in critical or high-traffic facilities and at special events. The APDS performs continuous aerosol collection, sample preparation, and detection using multiplexed immunoassay followed by confirmatory PCR using real-time TaqMan assays. We have integrated completely reusable flow-through devices that perform DNA extraction and PCR amplification. The fully integrated system was challenged with aerosolized Bacillus anthracis, Yersinia pestis, Bacillus globigii, and botulinum toxoid. By coupling highly selective antibody- and DNA-based assays, the probability of an APDS reporting a false positive is extremely low.


Subject(s)
Air Microbiology , Bacillus anthracis/isolation & purification , Botulinum Toxins/analysis , Environmental Monitoring/instrumentation , Immunoassay/instrumentation , Polymerase Chain Reaction/instrumentation , Yersinia pestis/isolation & purification , Aerosols , DNA/isolation & purification , Microspheres
5.
Anal Chem ; 75(14): 3446-50, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-14570196

ABSTRACT

Continuous monitoring of the environment for infectious diseases and related biowarfare agents requires the implementation of practical cost-effective methodologies that are highly sensitive and specific. One compatible method employed in clinical diagnostics is real-time polymerase chain reaction (PCR) analysis. The utility of this technique for environmental monitoring is limited, however, by the utilization of single-use consumables in commercial PCR instruments. This greatly increases mechanical complexity, because sophisticated robotic mechanisms must replenish the disposable elements. An alternative strategy develops an autonomous monitoring system consisting of reusable modules that readily interface with fluidic circuitry in a flow-through scheme. The reduced complexity should increase reliability while decreasing operating costs. In this report, we describe a reusable, flow-through PCR module that functions as one component in such a system. This module was rigorously evaluated with Bacillus anthracis genomic DNA and demonstrated high repeatability, sensitivity, and efficiency, with no evidence of sample-to-sample carryover.


Subject(s)
Communicable Diseases/microbiology , Polymerase Chain Reaction/instrumentation , Algorithms , Communicable Diseases/diagnosis , DNA/chemistry , DNA/genetics
6.
Biosens Bioelectron ; 18(9): 1115-23, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12788554

ABSTRACT

The handheld advanced nucleic acid analyzer (HANAA) is a portable real time thermal cycler unit that weighs under 1 kg and uses silicon and platinum-based thermalcycler units to conduct rapid heating and cooling of plastic reaction tubes. Two light emitting diodes (LED) provide greater than 1 mW of electrical power at wavelengths of 490 nm (blue) and 525 nm (green), allowing detection of the dyes FAM and JOE/TAMRA. Results are displayed in real time as bar graphs, and up to three, 4-sample assays can be run on the charge of the 12 V portable battery pack. The HANAA was evaluated for detection of defined Escherichia coli strains, and wild-type colonies isolated from stream water, using PCR for the lac Z and Tir genes. PCR reactions using SYBR Green dye allowed detection of E. coli ATCC 11775 and E. coli O157:H7 cells in under 30 min of assay time; however, background fluorescence associated with dye binding to nonspecific PCR products was present. DNA extracted from three isolates of Bacillus anthracis Ames, linked to a bioterrorism incident in Washington DC in October 2001, were also successfully tested on the HANAA using primers for the vrrA and capA genes. Positive results were observed at 32 and 22 min of assay time, respectively. A TaqMan probe specific to the aroQ gene of Erwinia herbicola was tested on the HANAA and when 500 cells were used as template, positive results were observed after only 7 min of assay time. Background fluorescence associated with the use of the probe was negligible. The HANAA is unique in offering real time PCR in a handheld format suitable for field use; a commercial version of the instrument, offering six reaction chambers, is available as of Fall 2002.


Subject(s)
Bacteria/isolation & purification , Cold Temperature , DNA, Bacterial/analysis , Environmental Monitoring/instrumentation , Hot Temperature , Polymerase Chain Reaction/instrumentation , Spectrometry, Fluorescence/instrumentation , Transducers , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Bacteria/genetics , Environmental Monitoring/methods , Equipment Design , Equipment Failure Analysis , Erwinia/genetics , Erwinia/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Miniaturization , Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Fluorescence/methods , Water Microbiology , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...