Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Arq. bras. cardiol ; 115(1): 71-77, jul. 2020. tab, graf
Article in English, Portuguese | LILACS, Sec. Est. Saúde SP | ID: biblio-1131258

ABSTRACT

Resumo Fundamento O tempo de condução atrioventricular (TCAV) é influenciado pelo estímulo autonômico e sujeito a remodelação fisiológica. Objetivo Avaliar a variabilidade da TCAV batimento-a-batimento e o intervalo RR em atletas e indivíduos sedentários saudáveis. Métodos Vinte adultos, incluindo 10 indivíduos sedentários saudáveis (controles) e 10 corredores de elite de longa distância (atletas), com idade, peso e altura ajustados foram submetidos à avaliação do equivalente metabólico máximo (MET) e registro de ECG em repouso supino de 15 minutos sete dias depois. O intervalo entre os picos da onda P e da onda R definiu o TCAV. Foram calculadas a média (M) e o desvio padrão (DP) de intervalos RR consecutivos (RR) e TCAV acoplados, bem como as linhas de regressão de RR vs. TCAV (RR-TCAV). A condução AV concordante foi definida como o slope RR-AVCT positivo e, caso contrário, discordante. Um modelo de regressão linear multivariada foi desenvolvido para explicar o MET com base nos parâmetros de variabilidade do TCAV e intervalo RR. Nível de significância: 5%. Resultados Nos atletas, os valores de M-RR e DP-RR foram maiores que nos controles, enquanto M-TCAV e DP-TCAV não foram. Os slopes RR-TCAV foram, respectivamente, 0,038 ± 0,022 e 0,0034 ± 0,017 (p < 0,05). Utilizando um valor de corte de 0,0044 (AUC 0,92 ± 0,07; p < 0,001), o slope RR-TCAV mostrou 100% de especificidade e 80% de sensibilidade. Em um modelo multivariado, o slope DP-RR e RR-TCAV foram variáveis explicativas independentes do MET (razão F: 17,2; p < 0,001), apresentando especificidade de 100% e sensibilidade de 90% (AUC: 0,99 ± 0,02; p < 0,001). Conclusão Em corredores de elite, o acoplamento dinâmico de TCAV para intervalo RR apresenta condução AV discordante espontânea, caracterizada por slope na linha de regressão TCAV negativa vs. intervalo RR. O desvio padrão dos intervalos RR e o slope da linha de regressão do TCAV vs. intervalo RR são variáveis explicativas independentes do MET. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Abstract Background Atrioventricular conduction time ( AVCT ) is influenced by autonomic input and subject to physiological remodeling. Objective To evaluate beat-by-beat AVCT and RR-interval variability in athletes and healthy sedentary subjects. Methods Twenty adults, including 10 healthy sedentary (Controls) and 10 elite long-distance runners (Athletes), age, weight and height-adjusted, underwent maximal metabolic equivalent (MET) assessment, and 15-min supine resting ECG recording seven days later. The interval between P-wave and R-wave peaks defined the AVCT . Mean (M) and standard deviation (SD) of consecutive RR-intervals (RR) and coupled AVCT were calculated, as well as regression lines of RR vs. AVCT (RR-AVCT) . Concordant AV conduction was defined as positive RR-AVCT slope and discordant otherwise. A multivariate linear regression model was developed to explain MET based on AVCT and RR-interval variability parameters. Significance-level: 5 %. Results In Athletes, M-RR and SD-RR values were higher than in Controls, whereas M-AVCT and SD-AVCT were not. RR-AVCT slopes were, respectively, 0.038 ± 0.022 and 0.0034 ± 0.017 (p < 0.05). Using a cut-off value of 0.0044 (AUC 0.92 ± 0.07; p < 0.001), RR-AVCT slope showed 100% specificity and 80% sensitivity. In a multivariate model, SD-RR and RR-AVCT slope were independent explanatory variables of MET (F-ratio: 17.2; p < 0.001), showing 100% specificity and 90% sensitivity (AUC 0.99 ± 0.02; p < 0.001). Conclusion In elite runners, AVCT to RR -interval dynamic coupling shows spontaneous discordant AV conduction, characterized by negative AVCT vs. RR -interval regression line slope. RR -intervals standard deviation and AVCT vs. RR -interval regression line slope are independent explanatory variables of MET (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Subject(s)
Humans , Adult , Atrioventricular Node/diagnostic imaging , Athletes , Autonomic Nervous System , Linear Models , Electrocardiography , Heart Rate
2.
Arq Bras Cardiol ; 115(1): 71-77, 2020 07.
Article in English, Portuguese | MEDLINE | ID: mdl-32401843

ABSTRACT

Background Atrioventricular conduction time ( AVCT ) is influenced by autonomic input and subject to physiological remodeling. Objective To evaluate beat-by-beat AVCT and RR-interval variability in athletes and healthy sedentary subjects. Methods Twenty adults, including 10 healthy sedentary (Controls) and 10 elite long-distance runners (Athletes), age, weight and height-adjusted, underwent maximal metabolic equivalent (MET) assessment, and 15-min supine resting ECG recording seven days later. The interval between P-wave and R-wave peaks defined the AVCT . Mean (M) and standard deviation (SD) of consecutive RR-intervals (RR) and coupled AVCT were calculated, as well as regression lines of RR vs. AVCT (RR-AVCT) . Concordant AV conduction was defined as positive RR-AVCT slope and discordant otherwise. A multivariate linear regression model was developed to explain MET based on AVCT and RR-interval variability parameters. Significance-level: 5 %. Results In Athletes, M-RR and SD-RR values were higher than in Controls, whereas M-AVCT and SD-AVCT were not. RR-AVCT slopes were, respectively, 0.038 ± 0.022 and 0.0034 ± 0.017 (p < 0.05). Using a cut-off value of 0.0044 (AUC 0.92 ± 0.07; p < 0.001), RR-AVCT slope showed 100% specificity and 80% sensitivity. In a multivariate model, SD-RR and RR-AVCT slope were independent explanatory variables of MET (F-ratio: 17.2; p < 0.001), showing 100% specificity and 90% sensitivity (AUC 0.99 ± 0.02; p < 0.001). Conclusion In elite runners, AVCT to RR -interval dynamic coupling shows spontaneous discordant AV conduction, characterized by negative AVCT vs. RR -interval regression line slope. RR -intervals standard deviation and AVCT vs. RR -interval regression line slope are independent explanatory variables of MET (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0).


Subject(s)
Athletes , Atrioventricular Node , Adult , Atrioventricular Node/diagnostic imaging , Autonomic Nervous System , Electrocardiography , Heart Rate , Humans , Linear Models
3.
Clin Physiol Funct Imaging ; 36(4): 269-73, 2016 Jul.
Article in English | MEDLINE | ID: mdl-25532598

ABSTRACT

The purpose of this study was to investigate the application of the principal component analysis (PCA) technique on power spectral density function (PSD) of consecutive normal RR intervals (iRR) aiming at assessing its ability to discriminate healthy women according to age groups: young group (20-25 year-old) and middle-aged group (40-60 year-old). Thirty healthy and non-smoking female volunteers were investigated (13 young [mean ± SD (median): 22·8 ± 0·9 years (23·0)] and 17 Middle-aged [51·7 ± 5·3 years (50·0)]). The iRR sequence was collected during ten minutes, breathing spontaneously, in supine position and in the morning, using a heart rate monitor. After selecting an iRR segment (5 min) with the smallest variance, an auto regressive model was used to estimate the PSD. Five principal component coefficients, extracted from PSD signals, were retained for analysis according to the Mahalanobis distance classifier. A threshold established by logistic regression allowed the separation of the groups with 100% specificity, 83·2% sensitivity and 93·3% total accuracy. The PCA appropriately classified two groups of women in relation to age (young and Middle-aged) based on PSD analysis of consecutive normal RR intervals.


Subject(s)
Aging , Autonomic Nervous System/physiology , Electrocardiography/methods , Heart Rate , Heart/innervation , Signal Processing, Computer-Assisted , Adult , Age Factors , Female , Healthy Volunteers , Humans , Middle Aged , Predictive Value of Tests , Principal Component Analysis , Sex Factors , Supine Position , Time Factors , Young Adult
4.
Front Physiol ; 6: 258, 2015.
Article in English | MEDLINE | ID: mdl-26441677

ABSTRACT

The aim of this study was to assess and to compare heart rate variability (HRV) after resistance exercise (RE) in treated hypertensive and normotensive subjects. Nine hypertensive men [HT: 58.0 ± 7.7 years, systolic blood pressure (SBP) = 133.6 ± 6.5 mmHg, diastolic blood pressure (DBP) = 87.3 ± 8.1 mmHg; under antihypertensive treatment] and 11 normotensive men (NT: 57.1 ± 6.0 years, SBP = 127 ± 8.5 mmHg, DBP = 82.7 ± 5.5 mmHg) performed a single session of RE (2 sets of 15-20 repetitions, 50% of 1 RM, 120 s interval between sets/exercise) for the following exercises: leg extension, leg press, leg curl, bench press, seated row, triceps push-down, seated calf flexion, seated arm curl. HRV was assessed at resting and during 10 min of recovery period by calculating time (SDNN, RMSSD, pNN50) and frequency domain (LF, HF, LF/HF) indices. Mean values of HRV indices were reduced in the post-exercise period compared to the resting period (HT: lnHF: 4.7 ± 1.4 vs. 2.4 ± 1.2 ms(2); NT: lnHF: 4.8 ± 1.5 vs. 2.2 ± 1.1 ms(2), p < 0.01). However, there was no group vs. time interaction in this response (p = 0.8). The results indicate that HRV is equally suppressed after RE in normotensive and hypertensive individuals. These findings suggest that a single session of RE does not bring additional cardiac autonomic stress to treated hypertensive subjects.

5.
Arq Bras Cardiol ; 104(6): 450-5, 2015 Jun.
Article in English, Portuguese | MEDLINE | ID: mdl-26131700

ABSTRACT

BACKGROUND: In chronic Chagas disease (ChD), impairment of cardiac autonomic function bears prognostic implications. Phase­rectification of RR-interval series isolates the sympathetic, acceleration phase (AC) and parasympathetic, deceleration phase (DC) influences on cardiac autonomic modulation. OBJECTIVE: This study investigated heart rate variability (HRV) as a function of RR-interval to assess autonomic function in healthy and ChD subjects. METHODS: Control (n = 20) and ChD (n = 20) groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600-1100 ms. In each class, mean RR-intervals (MNN) and root-mean-squared difference (RMSNN) of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT), and in AC (RMSNNAC) and DC (RMSNNDC) phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05). RESULTS: Correlation coefficient was significant in all regressions (p < 0.05). In the control group, RMSNNT, RMSNNAC, and RMSNNDC significantly increased linearly with MNN (p < 0.05). In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not. CONCLUSION: HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence.


Subject(s)
Autonomic Nervous System/physiopathology , Chagas Disease/physiopathology , Heart Rate/physiology , Acceleration , Adult , Aged , Case-Control Studies , Chronic Disease , Electrocardiography , Female , Humans , Male , Middle Aged , Reference Values , Regression Analysis , Sedentary Behavior , Time Factors
6.
J Electrocardiol ; 47(3): 306-10, 2014.
Article in English | MEDLINE | ID: mdl-24406208

ABSTRACT

BACKGROUND: Deceleration capacity (DC) of heart rate is a measure of cardiac vagal modulation. This study introduced a DC adaptation (Modified Index) that measured the velocity of change in the phase-rectified signal averaging curve, and assessed its ability to discriminate athletes from controls. MATERIALS AND METHODS: The Modified Index was compared to Standard DC approach in a prospective case-control study. Subjects were classified according to maximal metabolic equivalents as the control group (CG) and athlete group (AG). The Modified Index was compared to Standard DC and classical approaches (RMSSD and HF) by the area under receiver operating characteristic curve (AUC) using 10,000 bootstraps. RESULTS: In Standard DC and Modified Index bootstrap median values were (ms), respectively, 11.80 and 17.94 (p<0.01) in CG, and 25.98 and 45.62 in AG (p<0.01). AUC (mean±SD) was 0.70±0.12 for Standard DC and 0.96±0.04 for Modified Index (p<0.01). CONCLUSIONS: Modified Index appropriately discriminates athletes from healthy sedentary subjects.


Subject(s)
Electrocardiography/methods , Exercise Tolerance/physiology , Heart Rate/physiology , Physical Conditioning, Human , Physical Fitness/physiology , Signal Processing, Computer-Assisted , Sports/physiology , Adult , Algorithms , Deceleration , Diagnosis, Computer-Assisted/methods , Exercise Test/methods , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
7.
Acta Cardiol ; 68(6): 607-13, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24579439

ABSTRACT

OBJECTIVE: Most studies investigating the effects of non-pharmacological interventions, such as physical training (PT), on cardiac autonomic control, assessed the HRV only in resting conditions. Recently, a new time-frequency mathematical approach based on the short-time Fourier transform (STFT) method has been validated for the assessment of HRV in non-stationary conditions such as the immediate post-exercise period. The aim of this study was to evaluate the effects of the PT on post-exercise cardiac autonomic control using the time-frequency STFT analysis of the HRV. METHODS: Twenty-one healthy male volunteers participated in this study. The subjects were initially evaluated for their physical exercise/sport practice and allocated to groups of low physical training ((Low)PT, n = 13) or high physical training (H(igh)PT, n = 8). The post-exercise HRV was assessed by the STFT method, which provides the analysis of dynamic changes in the power of the low- and high-frequency spectral components (LF and HF, respectively) of the HRV during the whole recovery period. RESULTS: Greater LF (from the min 5 to 10) and HF (from the min 6 to 10) in the post-exercise period in the H(igh)PT compared to the (Low)PT group (P < 0.05) was observed. CONCLUSION: These results indicate that exercise training exerts beneficial effects on post-exercise cardiac autonomic control.


Subject(s)
Autonomic Nervous System/physiology , Exercise/physiology , Heart Rate/physiology , Recovery of Function , Exercise Test , Fourier Analysis , Humans , Male , Reference Values , Young Adult
8.
Rev. bras. eng. biomed ; 27(4): 215-223, dez. 2011. ilus, tab, graf
Article in English | LILACS | ID: lil-613997

ABSTRACT

The accuracy of high resolution electrocardiographic (HRECG) methods for stratifying the risk of malignant ventricular arrhythmia depends on the fidelity of QRS fiducial points detection. This study aims at examining the effect of acquisition and processing variables in HRECG on the variability of QRS complex offset (QRS offset) detection in simulated and biological signals, as well as investigating the factors related to the so called uncertainty principle applied to HRECG. Successive QRS offset locations were calculated in different signals configurations including HRECG data from patients with and without ventricular late potentials and simulated data using linear and exponential functions. The expected error in QRS offset detection was assessed as a function of: i)   signal characteristics (Simulated or Biological); ii) Sampling Frequency (SF); iii) Residual Noise Level (RNL); iv) QRS maximum amplitudes. The uncertainty principle was related to HRECG and a given exponential signals, and increasing RNL up to  0.5  μV. SF and RNL are outstanding factors influencing QRS offset variability. Thus, HRECG related uncertainty principle is a deterministic phenomenon associated with both HRECG signal and mathematical formulation of the terminal decay of the QRS complex to the fusion with the ST segment.


A precisão dos resultados dos exames de eletrocardiografia de alta resolução (ECGAR) para estratificação do desenvolvimento de arritmias ventriculares malignas depende da fidelidade na detecção dos pontos fiduciais do complexo QRS. O presente estudo tem o objetivo de avaliar o efeito das variáveis de aquisição e processamento do ECGAR sobre a variabilidade da detecção do ponto final do complexo QRS (QRS-fim) em sinais biológicos simulados e reais, bem como investigar o efeito de condições relacionadas ao assim formulado “princípio da incerteza da eletrocardiografia de alta resolução”. Detecções sucessivas do QRS-fim foram realizadas usando diferentes configurações de sinais simulados e de pacientes com e sem potenciais tardios ventriculares. Os sinais simulados empregaram funções lineares e exponenciais para mimetização da porção final do complexo QRS. O erro de detecção do QRS-fim esperado foi avaliado em função de: i) procedência dos sinais (simulado ou biológico); ii) frequência de amostragem (FA); iii) nível de ruído residual (NRR); iv) amplitude máxima do complexo QRS. A presença do princípio da incerteza relacionou-se ao padrão de decaimento exponencial e ao aumento progressivo da NRR, até  0,5  μV. FA e NRR têm impacto significativo na variabilidade do QRS-fim. Assim, o principio da incerteza da ECGAR é um fenômeno determinístico dependente da forma de onda relativa ao decaimento da região terminal do complexo QRS até a sua fusão com o segmento ST.


Subject(s)
Humans , Electrocardiography/instrumentation , Electrocardiography/methods , Electrocardiography , Arrhythmias, Cardiac/complications , Bundle-Branch Block/diagnosis , Heart Rate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...