Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
RSC Adv ; 10(11): 6259-6270, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35495990

ABSTRACT

Metals capped with organochalcogenides have attracted considerable interest due to their practical applications, which include catalysis, sensing, and biosensing, due to their optical, magnetic, electrochemical, adhesive, lubrication, and antibacterial properties. There are numerous reports of metals capped with organothiol molecules; however, there are few studies on metals capped with organoselenium or organotellurium. Thus, there is a gap to be filled regarding the properties of organochalcogenide systems which can be improved by replacing sulfur with selenium or tellurium. In the last decade, there has been significant development in the synthesis of selenium and tellurium compounds; however, it is difficult to find commercial applications of these compounds because there are few studies showing the feasibility of their synthesis and their advantages compared to organothiol compounds. Stability against oxidation by molecular oxygen under ambient conditions is one of the properties which can be improved by choosing the correct organochalcogenide; this can confer important advantages for many more suitable applications. This paper reports the successful synthesis and characterization of gold nanoparticles functionalized with organochalcogenide molecules (dibutyl-disulfide, dibutyl-diselenide and dibutyl-ditelluride) and evaluates the oxidation stability of the organochalcogenides. Spherical gold nanoparticles with diameters of 24 nm were capped with organochalcogenides and were investigated using X-ray photoelectron spectroscopy (XPS) to show the improved stability of organoselenium compared with organothiol and organotellurium. The results suggest that the organoselenium is a promising candidate to replace organothiol because of its enhanced stability towards oxidation by molecular oxygen under ambient conditions and its slow oxidation rate. The observed difference in the oxidation processes, as discussed, is also in agreement with theoretical calculations.

2.
Braz Dent J ; 27(2): 181-6, 2016.
Article in English | MEDLINE | ID: mdl-27058381

ABSTRACT

In order to evaluate its application as a dental prosthesis material, a CoCrW alloy was subjected to in vitro cytotoxicity test, surface characterization and electrochemical studies performed in artificial saliva and 0.15 mol.L-1 NaCl medium. The used techniques were: anodic polarization curves, chronoamperometric measurements, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and X-ray photoelectron spectroscopy (XPS). Cytotoxicity test was also performed. The electrochemical behavior of CoCrW alloy was compared in both studied media, from corrosion potential (Ecorr) to a 600 mV anodic overvoltage. From the electrochemical measurements it was observed that the CoCrW alloy in both media presents only generalized corrosion. SEM and EDS analysis showed that the alloy presents carbide niobium and silicon and manganese oxides as nonmetallic inclusions. XPS results indicated that cobalt does not significantly contribute to the passivating film formation. Cytotoxicity test showed no cytotoxic character of CoCrW alloy. These results suggest that the CoCrW alloy can be used as biomaterial to be applied as prosthesis in dental implants.


Subject(s)
Dental Alloys/chemistry , Saliva, Artificial/chemistry , In Vitro Techniques , Surface Properties
3.
Braz. dent. j ; 27(2): 181-186, Mar.-Apr. 2016. tab, graf
Article in English | LILACS | ID: lil-778332

ABSTRACT

Abstract In order to evaluate its application as a dental prosthesis material, a CoCrW alloy was subjected to in vitro cytotoxicity test, surface characterization and electrochemical studies performed in artificial saliva and 0.15 mol.L-1 NaCl medium. The used techniques were: anodic polarization curves, chronoamperometric measurements, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and X-ray photoelectron spectroscopy (XPS). Cytotoxicity test was also performed. The electrochemical behavior of CoCrW alloy was compared in both studied media, from corrosion potential (Ecorr) to a 600 mV anodic overvoltage. From the electrochemical measurements it was observed that the CoCrW alloy in both media presents only generalized corrosion. SEM and EDS analysis showed that the alloy presents carbide niobium and silicon and manganese oxides as nonmetallic inclusions. XPS results indicated that cobalt does not significantly contribute to the passivating film formation. Cytotoxicity test showed no cytotoxic character of CoCrW alloy. These results suggest that the CoCrW alloy can be used as biomaterial to be applied as prosthesis in dental implants.


Resumo Estudos eletroquímicos, caracterização de superfície e teste de citotoxicidade in vitro foram realizados da liga CoCrW em meios de saliva artificial e NaCl 0,15 mol.L-1, com o objetivo de avaliar a sua aplicação como material de prótese dentária. Foram usadas como técnicas, curvas de polarização anódica, medidas cronoamperométricas, espectroscopia de impedância eletroquímica (EIE), microscopia eletrônica de varredura (MEV), espectroscopia por energia dispersiva de raios X (EDS) e espectroscopia fotoeletrônica de raios X (XPS). O teste de citotoxicidade também foi realizado. O comportamento eletroquímico da liga CoCrW foi comparado nos dois meios estudados desde o potencial de corrosão (Ecorr) até uma sobretensão anódica de 600 mV. Foi observado, a partir de medidas eletroquímicas, que a liga CoCrW se encontra passivada em uma ampla faixa de potencial e que a sobretensões mais elevadas apresenta apenas corrosão generalizada nos dois meios. Análises por MEV e EDS mostraram que a liga apresenta inclusões não metálicas de carbeto de nióbio, de óxidos de silício e de manganês. Os resultados de XPS indicaram que o cobalto não contribui significativamente para a formação do filme passivo. O teste de citotoxicidade mostrou que a liga CoCrW não se apresenta citotóxica. Estes resultados sugerem que a liga estudada pode ser usada como biomaterial a ser aplicado como prótese sobre implantes dentários.


Subject(s)
Dental Alloys/chemistry , Saliva, Artificial/chemistry , In Vitro Techniques , Surface Properties
4.
Mater Sci Eng C Mater Biol Appl ; 41: 343-8, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24907769

ABSTRACT

The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element.


Subject(s)
Oxides/chemistry , Titanium/chemistry , Alloys , Aluminum/chemistry , Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oxidation-Reduction , Porosity , Spectrum Analysis, Raman
5.
Int J Biomater ; 2012: 290179, 2012.
Article in English | MEDLINE | ID: mdl-23197981

ABSTRACT

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.

6.
Lab Chip ; 12(11): 1963-6, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22549415

ABSTRACT

We report a glass/PDMS-based microfluidic biosensor that integrates contactless conductivity transduction and folic acid, a target for tumor biomarker, as a bioreceptor. The device presents relevant advantages such as direct determination--dismiss the use of redox mediators as in faradaic electrochemical techniques--and the absence of the known drawbacks related to the electrode-solution interface. Characterizations of the functionalization processes and chemical sensor are described in this communication.


Subject(s)
Biosensing Techniques , Folic Acid/chemistry , Biomarkers, Tumor/analysis , Dimethylpolysiloxanes/chemistry , Electric Conductivity , Electrodes , Glass , Humans , Microfluidic Analytical Techniques , Neoplasms/diagnosis , Oxidation-Reduction
7.
J Colloid Interface Sci ; 343(1): 256-62, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20031147

ABSTRACT

Four aluminas were used as supports for impregnation with a zirconium oxide with the aim to achieve a coating, without phase separation, between support and modifier. The supports were impregnated with different concentrations of zirconium aqueous resin, obtained through the polymeric precursor method. After impregnation the samples were calcined and then characterized by XRD, which led to identification of crystalline zirconia in different concentrations from each support used. Using a simple geometric model the maximum amount of surface modifier oxide required for the complete coating of a support with a layer of unit cells was estimated. According to this estimate, only the support should be identified below the limit proposed and crystalline zirconium oxide should be identified above this limit when a complete coating is reached. The results obtained from XRD agree with the estimated values and to confirm the coating, the samples were also characterized by EDS/STEM, HRTEM, XPS, and XAS. The results showed that the zirconium oxide on the surface of alumina support reached the coating in the limit of 15 Zr nm(-2), without the formation of the ZrO(2) phase.

8.
J Colloid Interface Sci ; 300(2): 543-52, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16780861

ABSTRACT

The immobilization and properties of the nitric oxide donor trans-[Ru(NO)Cl(cyclam)](PF(6))(2), RuNO, entrapped in a silica matrix by the sol-gel process is reported herein. The entrapped nitrosyl complex was characterized by spectroscopic (UV-vis, infrared (IR), X-ray photoelectron, and (13)C and (29)Si MAS NMR) and electrochemical techniques. The entrapped species exhibit one characteristic absorption band in the UV-vis region of the electronic spectrum at 354 nm and one IR nu(NO) stretching band at 1865 cm(-1), as does the RuNO species in aqueous solution. Our results show that trans-[Ru(NO)Cl(cyclam)](PF(6))(2) can be entrapped in a SiO(2) matrix with preservation of the molecular structure. However, in a SiO(2)/SiNH(2) matrix, the complex undergoes a nucleophilic attack by the amine group at the nitrosonium. Irradiation of the complex, entrapped in the SiO(2) matrix, with light of 334 nm, resulted in NO release. The material was regenerated to its initial nitrosyl form by reaction with nitric oxide.


Subject(s)
Gels/chemistry , Magnetic Resonance Spectroscopy/methods , Nitric Oxide Donors/pharmacology , Nitric Oxide/chemistry , Organometallic Compounds/chemistry , Silicon Dioxide/chemistry , Spectrophotometry, Infrared/methods , Amines/chemistry , Carbon Tetrachloride/chemistry , Drug Design , Electrochemistry/methods , Light , Microscopy, Electron, Scanning , Nitric Oxide Donors/chemistry , Nitrogen/chemistry , Ruthenium/chemistry , X-Rays
9.
J Colloid Interface Sci ; 286(1): 303-9, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15848432

ABSTRACT

The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N-propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with "on-spot" MALDI-TOF MS detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...