Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31616643

ABSTRACT

Background: The failure to translate preclinical results to the clinical setting is the rule, not the exception. One reason that is frequently overlooked is whether the animal model reproduces distinctive features of human disease. Another is the reproducibility of the method used to measure treatment effects in preclinical studies. Left ventricular (LV) function improvement is the most common endpoint in preclinical cardiovascular disease studies, while echocardiography is the most frequently used method to evaluate LV function. In this work, we conducted a robust echocardiographic evaluation of LV size and function in dogs chronically infected by Trypanosoma cruzi. Methods and Results: Echocardiography was performed blindly by two distinct observers in mongrel dogs before and between 6 and 9 months post infection. Parameters analyzed included end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF), and fractional shortening (FS). We observed a significant LVEF and FS reduction in infected animals compared to controls, with no significant variation in volumes. However, the effect of chronic infection in systolic function was quite variable, with EF ranging from 17 to 66%. Using the cut-off value of EF ≤ 40%, established for dilated cardiomyopathy (DCM) in dogs, only 28% of the infected dogs were affected by the chronic infection. Conclusions: The canine model of CCC mimics human disease, reproducing the percentage of individuals that develop heart failure during the chronic infection. It is thus mandatory to establish inclusion criteria in the experimental design of canine preclinical studies to account for the variable effect that chronic infection has on systolic function.


Subject(s)
Chagas Cardiomyopathy/diagnostic imaging , Echocardiography/methods , Heart Ventricles/diagnostic imaging , Animals , Disease Models, Animal , Dogs , Reproducibility of Results , Ventricular Function
2.
Biochem Pharmacol ; 148: 213-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29309767

ABSTRACT

Benznidazole and nifurtimox-treatments regimens currently used in human are supported by very limited experimental data. This study was designed to evaluate the time and dose dependence for efficacy of the most important nitroheterocyclic drugs in use for Chagas disease. In order to evaluate time dependence, Y strain-infected mice received benznidazole for a total of 1, 3, 7, 10, 20, and 40 days. Treatment courses of 3-10-day were effective in clearing parasitaemia and suppressing mortality, but parasitological cure was not achieved. Extending the treatments to 20 or 40 days clearly improved benznidazole efficacy. The 20-day treatment induced cure in 57.1% of Y strain infections (partially drug resistant) but failed to cure Colombian strain infections (full drug resistant), while the 40-day treatment resulted in cure of 100% of Y and 50% of Colombian strain infected mice. The increased cure rates in T. cruzi infected animals that received nifurtimox for 40 days confirm the relationship between the length of treatment and efficacy. An improvement in efficacy was observed with increasing benznidazole doses; cure was verified in 28.6% (75 mg/kg), 57.1% (100 mg/kg) and 80% (300 mg/kg). Overall, these nonclinical study data provide evidence that the efficacy of benznidazole is dose and time dependent. These findings may be relevant for optimizing treatment of human Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Resistance , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Dose-Response Relationship, Drug , Drug Administration Schedule , Mice , Nifurtimox , Parasitemia , Trypanocidal Agents/administration & dosage
3.
Antimicrob Agents Chemother ; 58(8): 4362-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24841257

ABSTRACT

This study was designed to verify the in vivo efficacy of sulfoxide and sulfone fexinidazole metabolites following oral administration in a murine model of Chagas disease. Female Swiss mice infected with the Y strain of Trypanosoma cruzi were treated orally once per day with each metabolite at doses of 10 to 100 mg/kg of body weight for a period of 20 days. Parasitemia was monitored throughout, and cures were detected by parasitological and PCR assays. The results were compared with those achieved with benznidazole treatment at the same doses. Fexinidazole metabolites were effective in reducing the numbers of circulating parasites and protecting mice against death, compared with untreated mice, but without providing cures at daily doses of 10 and 25 mg/kg. Both metabolites were effective in curing mice at 50 mg/kg/day (30% to 40%) and 100 mg/kg/day (100%). In the benznidazole-treated group, parasitological cure was detected only in animals treated with the higher dose of 100 mg/kg/day (80%). Single-dose pharmacokinetic parameters for each metabolite were obtained from a parallel group of uninfected mice and were used to estimate the profiles following repeated doses. Pharmacokinetic data suggested that biological efficacy most likely resides with the sulfone metabolite (or subsequent reactive metabolites formed following reduction of the nitro group) following administration of either the sulfoxide or the sulfone and that prolonged plasma exposure over the 24-h dosing window is required to achieve high cure rates. Fexinidazole metabolites were effective in treating T. cruzi in a mouse model of acute infection, with cure rates superior to those achieved with either fexinidazole itself or benznidazole.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/pharmacology , Sulfones/pharmacology , Sulfoxides/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Biotransformation , Chagas Disease/mortality , Chagas Disease/parasitology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Mice , Nitroimidazoles/pharmacokinetics , Sulfones/metabolism , Sulfoxides/metabolism , Survival Analysis , Trypanocidal Agents/pharmacokinetics , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...