Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294754, 2023.
Article in English | MEDLINE | ID: mdl-38033148

ABSTRACT

BACKGROUND: Phosphodiesterase 5 inhibitors (PDE5i) are the first line treatment for erectile dysfunction; however, several articles and case reports have shown central nervous system effects, that can cause seizures in susceptible patients. This study aims to describe the changes caused by the use of Sildenafil and Tadalafil through the analysis of abnormalities expressed in the electrocorticogram (ECoG) of rats and evaluate the seizure threshold response and treatment of seizures with anticonvulsants. MATERIALS AND METHODS: The study used 108 rats (Wistar). Before surgery for electrode placement in dura mater, the animals were randomly separated into 3 experiments for electrocorticogram analysis. Experiment 1: ECoG response to using PD5i (Sildenafil 20mg/kg and Tadalafil 2.6mg/kg p.o.). Experiment 2: ECoG response to the use of PD5i in association with Pentylenetetrazole (PTZ-30 mg/kg i.p.), a convulsive model. Experiment 3: ECoG response to anticonvulsant treatment (Phenytoin, Phenobarbital and Diazepam) of seizures induced by association IPDE5 + PTZ. All recordings were made thirty minutes after administration of the medication and analyzed for ten minutes, only once. We considered statistical significance level of *p<0.05, **p<0.01 and ***p < 0.001. RESULTS: After administration of Sildenafil and Tadalafil, there were increases in the power of recordings in the frequency bands in oscillations in alpha (p = 0.0920) and beta (p = 0.602) when compared to the control group (p<0.001). After the use of Sildenafil and Tadalafil associated with PTZ, greater potency was observed in the recordings during seizures (p<0.001), however, the Sildenafil group showed greater potency when compared to Tadalafil (p<0.05). Phenobarbital and Diazepam showed a better response in controlling discharges triggered by the association between proconvulsant drugs. CONCLUSIONS: PDE5i altered the ECoG recordings in the rats' motor cortexes, demonstrating cerebral asynchrony and potentiating the action of PTZ. These findings demonstrate that PDE5i can lower the seizure threshold.


Subject(s)
Phosphodiesterase 5 Inhibitors , Seizures , Animals , Male , Rats , Anticonvulsants/adverse effects , Diazepam , Pentylenetetrazole/adverse effects , Phenobarbital/adverse effects , Phosphodiesterase 5 Inhibitors/adverse effects , Rats, Wistar , Sildenafil Citrate/adverse effects , Tadalafil/adverse effects
2.
Food Chem Toxicol ; 170: 113452, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244459

ABSTRACT

Caffeine is a psychoactive substance used worldwide. The present study analyzes the seizure-related behavior and electrocorticographic (ECoG) patterns observed in rats following of a toxic dose of caffeine (150 mg/kg; intraperitoneal). Sixty-three rats were divided into three experiments: 1-Behavior's Description associated with caffeine-induced convulsion; 2- Comparison of the electrocorticographic patterns induced by caffeine and pentylenetetrazole, and 3- Assessment of the electrocorticographic response to antiepileptic drugs (diazepam, phenytoin, and phenobarbital). The behavioral analysis demonstrated tonic-clonic seizures with a loss of postural reflex and a latency of 365.8 s after the caffeine's administration. Caffeine-induced changes in the ECoG were consistent with the development of seizures with rapid evolution and burst potential consistent with the behavioral patterns observed during the caffeine-induced seizure. The ECoG of the brainwaves varied significantly between the seizures caused by caffeine and pentylenetetrazole. The predominant brain forces observed during the seizures were beta-band oscillations. The caffeine-induced seizures were resistant to attempted control with phenytoin and phenobarbital, but responded well to diazepam, which is consistent with a study of Pilocarpine, which showed that diazepam has anticonvulsant effects. These findings are important for the development of effective treatments for caffeine intoxication, in particular for individuals with a low seizure threshold.


Subject(s)
Pentylenetetrazole , Phenytoin , Rats , Animals , Pentylenetetrazole/toxicity , Phenytoin/pharmacology , Rats, Wistar , Caffeine/toxicity , Anticonvulsants/toxicity , Seizures/chemically induced , Diazepam/adverse effects , Phenobarbital
3.
Front Cell Neurosci ; 16: 884813, 2022.
Article in English | MEDLINE | ID: mdl-35774084

ABSTRACT

Epilepsy is one of the most common neurological disorders, which occurs due to the instability in the inhibitory and excitatory synaptic transmissions in the brain. However, many patients develop resistance to the available drugs, which results in cell degeneration caused due to inadequate control of the seizures. Curcumin, Curcuma longa, is known to be effective for the treatment of organic disorders and may prevent seizures, reduce oxidative stress, and decrease brain damage. Given this, the present study evaluated the antiepileptic effects of C. longa in comparison with both the diazepam and the combined application of these two substances, in terms of their effects on the brain activity and the potential histopathological changes in the hippocampus. This study used male Wistar rats (age: 10-12 weeks; weight: 260 ± 20 g), which were pretreated for 4 days with either saline, C. longa, diazepam, or C. longa + diazepam; and on the fifth day, pentylenetetrazol (PTZ) was administered to induce the seizure. In the C. longa group, a significant increase was observed in the latency of the onset of seizure-related behavior. Surprisingly, however, the combined treatment resulted in the best control of the seizure-related behavior, with the greatest latency of the onset of spasms and isolated clonic seizures. This group also obtained the best results in the electroencephalographic trace and seizure control, with a reduction in the frequency and amplitude of the spike-waves. In the saline group, PTZ significantly reduced the number of cells present in the CA1 and CA3 regions of the hippocampus, while the combined treatment obtained the best results in terms of the preservation of the neuron-like cells. These findings indicate that C. longa may contribute to the control of both seizures and the cell damage induced by PTZ, and that its association with diazepam may be a potentially effective option for the treatment of epilepsy in the future.

4.
Endocr Connect ; 11(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35148281

ABSTRACT

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

5.
Oxid Med Cell Longev ; 2020: 2497845, 2020.
Article in English | MEDLINE | ID: mdl-32802260

ABSTRACT

Ganoderma lucidum, mushroom used for centuries by Asian peoples as food supplement, has been shown interesting biological activities, including over the Central Nervous System. Besides, these mushroom bioactive compounds present antioxidant and anti-inflammatory activities. On the side, binge drinking paradigm consists of ethanol exposure that reflects the usual consumption of adolescents, which elicits deleterious effects, determined by high ethanol consumption, in a short period. In this study, we investigated whether the Aqueous Extract of G. lucidum (AEGl) reduces the behavioral disorders induced by alcohol. Male (n = 30) and female Wistar rats (n = 40), seventy-two days old, were used for behavioral/biochemical and oral toxicity test, respectively. Animals were exposed to 5 binges (beginning at 35 days old) of ethanol (3 g/kg/day) or distilled water. Twenty-four hours after the last binge administration, animals received AEGl (100 mg/kg/day) or distilled water for three consecutive days. After treatment protocol, open field, elevated plus maze, forced swim, and step-down inhibitory avoidance tests were performed. Oxidative stress parameters were measured to evaluate the REDOX balance. Our results demonstrated that AEGl elicited the recovery of spontaneous horizontal exploration capacity, anxiogenic- and depressive-profile, as well as short-term memory damage induced by binge-ethanol exposure. The behavioral effects of the extract were associated to the reequilibrium of the animals' REDOX balance. Thus, AEGl, a medicinal mushroom, ameliorates behavioral alteration on a model of motor, cognitive and psychiatric-like disorders induced by binge drinking paradigm and emerges as a useful tool as a food supplement in the management of disorders of alcoholic origin.


Subject(s)
Binge Drinking/complications , Ethanol/adverse effects , Nervous System Diseases/drug therapy , Oxidative Stress/drug effects , Reishi/chemistry , Animals , Female , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...