Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(46): 7812-7821, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37758474

ABSTRACT

In human and nonhuman primates, deep brain stimulation applied at or near the internal medullary lamina of the thalamus [a region referred to as "central thalamus," (CT)], but not at nearby thalamic sites, elicits major changes in the level of consciousness, even in some minimally conscious brain-damaged patients. The mechanisms behind these effects remain mysterious, as the connections of CT had not been specifically mapped in primates. In marmoset monkeys (Callithrix jacchus) of both sexes, we labeled the axons originating from each of the various CT neuronal populations and analyzed their arborization patterns in the cerebral cortex and striatum. We report that, together, these CT populations innervate an array of high-level frontal, posterior parietal, and cingulate cortical areas. Some populations simultaneously target the frontal, parietal, and cingulate cortices, while others predominantly target the dorsal striatum. Our data indicate that CT stimulation can simultaneously engage a heterogeneous set of projection systems that, together, target the key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.SIGNIFICANCE STATEMENT In human and nonhuman primates, deep brain stimulation at a specific site near the internal medullary lamina of the thalamus ["central thalamus," (CT)] had been shown to restore arousal and awareness in anesthetized animals, as well as in some brain-damaged patients. The mechanisms behind these effects remain mysterious, as CT connections remain poorly defined in primates. In marmoset monkeys, we mapped with sensitive axon-labeling methods the pathways originated from CT. Our data indicate that stimulation applied in CT can simultaneously engage a heterogeneous set of projection systems that, together, target several key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.


Subject(s)
Brain Injuries , Callithrix , Male , Animals , Female , Humans , Thalamus/physiology , Cerebral Cortex/physiology , Arousal/physiology , Consciousness/physiology , Neural Pathways/physiology
2.
Front Neuroanat ; 12: 36, 2018.
Article in English | MEDLINE | ID: mdl-29867376

ABSTRACT

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity. Strategies on the use of time by animals can provide important clues about how some species are adapted to competitive process in nature. Few studies have provided information about temporal niche in bats with special attention on the neural substrate underlies circadian rhythms. The aim of this study was to investigate these circadian centers with respect to their cytoarchitecture, chemical content and retinal projections in the flat-faced fruit-eating bat (Artibeus planirostris), a chiropteran endemic to South America. Unlike other species of phyllostomid bats, the flat-faced fruit-eating bat's peak of activity occurs 5 h after sunset. This raises several questions about the structure and function of the SCN and IGL in this species. We carried out a mapping of the retinal projections and cytoarchitectural study of the nuclei using qualitative and quantitative approaches. Based on relative optical density findings, the SCN and IGL of the flat-faced fruit-eating bat receive bilaterally symmetric retinal innervation. The SCN contains vasopressin (VP) and vasoactive intestinal polypeptide (VIP) neurons with neuropeptide Y (NPY), serotonin (5-HT) and glutamic acid decarboxylase (GAD) immunopositive fibers/terminals and is marked by intense glial fibrillary acidic protein (GFAP) immunoreactivity. The IGL contains NPY perikarya as well as GAD and 5-HT immunopositive terminals and is characterized by dense GFAP immunostaining. In addition, stereological tools were combined with Nissl stained sections to estimate the volumes of the circadian centers. Taken together, the present results in the flat-faced fruit-eating bat reveal some differences compared to other bat species which might explain the divergence in the hourly activity among bats in order to reduce the competitive potential and resource partitioning in nature.

3.
J Chem Neuroanat ; 55: 58-66, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24444614

ABSTRACT

The 3-hydroxytyramine/dopamine is a monoamine of the catecholamine group and it is a precursor of the noradrenaline and adrenaline synthesis, in which the enzyme tyrosine hydroxylase acts as a rate-limiting enzyme. The dopaminergic nuclei retrorubral field (A8 group), substantia nigra pars compacta (A9 group) and ventral tegmental area (A10 group) are involved in three complex circuitries named mesostriatal, mesocortical and mesolimbic, which are directly related to various behavioral manifestations such as motor control, reward signaling in behavioral learning, motivation and pathological manifestations of Parkinson's disease and schizophrenia. The aim of this study was to describe the delimitation of A8, A9 and A10 groups and the morphology of their neurons in the brain of the rock cavy (Kerodon rupestris), a typical Brazilian Northeast rodent belonging to the suborder Hystricomorpha, family Caviidae. Coronal and sagittal sections of the rock cavy brains were submitted to Nissl staining and TH immunohistochemistry. The organization of these dopaminergic nuclei in the rock cavy brain is very similar to that found in other animals of the Rodentia order, except for the presence of the tail of the substantia nigra, which is found only in the species under study. The results revealed that, apart some morphological variations, A8, A9 and A10 groups are phylogenetically stable brain structures.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/metabolism , Animals , Female , Immunohistochemistry , Male , Rodentia
4.
J Chem Neuroanat ; 44(1): 34-44, 2012 May.
Article in English | MEDLINE | ID: mdl-22531294

ABSTRACT

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN is the site of the endogenous biological clock that generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity and is responsible for the transmission of non-photic information to the SCN, thus participating in the integration between photic and non-photic stimuli. Both the SCN and IGL receive projections of retinal ganglion cells and the IGL is connected to the SCN through the geniculohypothalamic tract. Little is known about these structures in the primate brain and the pregeniculate nucleus (PGN) has been suggested to be the primate equivalent of the rodent IGL. The aim of this study was to characterize the PGN of a primate, the common marmoset (Callithrix jacchus), and to analyze its retinal afferents. Here, the marmoset PGN was found to be organized into three subsectors based on neuronal size, pattern of retinal projections, and the distribution of neuropeptide Y-, GAD-, serotonin-, enkephalin- and substance P-labeled terminals. This pattern indicates that the marmoset PGN is equivalent to the IGL. This detailed description contributes to the understanding of the circadian timing system in this primate species considering the importance of the IGL within the context of circadian regulation.


Subject(s)
Callithrix/anatomy & histology , Retina/anatomy & histology , Retina/metabolism , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/metabolism , Visual Pathways/anatomy & histology , Visual Pathways/metabolism , Animals , Circadian Rhythm/physiology , Enkephalins/metabolism , Glutamate Decarboxylase/metabolism , Immunohistochemistry , Male , Neuropeptide Y/metabolism , Phenotype , Retina/cytology , Serotonin/metabolism , Substance P/metabolism , Suprachiasmatic Nucleus/physiology , Thalamic Nuclei/cytology
5.
J Chem Neuroanat ; 43(2): 112-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22464977

ABSTRACT

Serotonin, or 5-hydroxytryptamine (5-HT), is a substance found in many tissues of the body, including as a neurotransmitter in the nervous system, where it can exert different post-synaptic actions. Inside the neuro-axis, 5-HT neurons are almost entirely restricted to the raphe nuclei of the brainstem. As such, 5-HT-immunoreactivity has been considered a marker of the raphe nuclei, which are located in the brainstem, at or near the midline. The present study investigated distribution of serotonergic neurons in the brain of the rock cavy (Kerodon rupestris), a rodent species inhabiting the Brazilian Northeast. The cytoarchitectonic location of serotonergic neurons was established through a series of 5-HT immunostained sections, compared with diagrams obtained from adjacent coronal and sagittal sections stained by the Nissl method. The following nuclei were defined: the rostral group, consisting of rostral linear raphe, caudal linear raphe, median and paramedian raphe, dorsal raphe, and pontine raphe nuclei, and the caudal group composed of raphe magnus, raphe pallidus and raphe obscurus nuclei. Other serotonergic neuronal clusters, such as the supralemniscal group and the rostral and caudal ventrolateral medulla oblongata clusters, were found outside the midline. Rare 5-HT-producing neurons were identified in the lateral parabrachial nucleus and in the pontine reticular formation, mostly along fibers of the lateral lemniscus. Despite exhibiting some specializations, the picture outlined for serotonergic groups in the rock cavy brain is comparable to that described for other mammalian species.


Subject(s)
Brain Chemistry/physiology , Raphe Nuclei/chemistry , Serotonergic Neurons/chemistry , Serotonin/chemistry , Animals , Biomarkers/analysis , Brain/cytology , Brain/physiology , Female , Guinea Pigs , Male , Raphe Nuclei/cytology , Raphe Nuclei/physiology , Serotonergic Neurons/physiology , Serotonin/physiology
6.
Neurosci Lett ; 488(1): 6-10, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21055446

ABSTRACT

Serotonin (5-HT) is involved in the fine adjustments at several brain centers including the core of the mammal circadian timing system (CTS) and the hypothalamic suprachiasmatic nucleus (SCN). The SCN receives massive serotonergic projections from the midbrain raphe nuclei, whose inputs are described in rats as ramifying at its ventral portion overlapping the retinohypothalamic and geniculohypothalamic fibers. In the SCN, the 5-HT actions are reported as being primarily mediated by the 5-HT1 type receptor with noted emphasis for 5-HT(1B) subtype, supposedly modulating the retinal input in a presynaptic way. In this study in a New World primate species, the common marmoset (Callithrix jacchus), we showed the 5-HT(1B) receptor distribution at the dorsal SCN concurrent with a distinctive location of 5-HT-immunoreactive fibers. This finding addresses to a new discussion on the regulation and synchronization of the circadian rhythms in recent primates.


Subject(s)
Receptor, Serotonin, 5-HT1B/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Callithrix/anatomy & histology , Cholera Toxin/metabolism , Diagnostic Imaging , Male , Visual Pathways/metabolism
7.
Brain Res ; 1320: 34-46, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20096673

ABSTRACT

In this study, two circadian related centers, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) were evaluated in respect to their cytoarchitecture, retinal afferents and chemical content of major cells and axon terminals in the rock cavy (Kerodon rupestris), a Brazilian rodent species. The rock cavy SCN is innervated in its ventral portion by terminals from the predominantly contralateral retina. It also contains vasopressin, vasoactive intestinal polypeptide and glutamic acid decarboxilase immunoreactive cell bodies and neuropeptide Y, serotonin and enkephalin immunopositive fibers and terminals and is marked by intense glial fibrillary acidic protein immunoreactivity. The IGL receives a predominantly contralateral retinal projection, contains neuropeptide Y and nitric oxide synthase-producing neurons and enkephalin immunopositive terminals and is characterized by dense GFAP immunoreactivity. This is the first report examining the neural circadian system in a crepuscular rodent species for which circadian properties have been described. The results are discussed comparing with what has been described for other species and in the context of the functional significance of these centers.


Subject(s)
Geniculate Bodies/anatomy & histology , Geniculate Bodies/metabolism , Rodentia/anatomy & histology , Rodentia/metabolism , Suprachiasmatic Nucleus/anatomy & histology , Suprachiasmatic Nucleus/metabolism , Animals , Circadian Rhythm , Immunohistochemistry , Male , Neurons/metabolism , Photomicrography , Retina/anatomy & histology , Retina/metabolism , Visual Pathways/anatomy & histology , Visual Pathways/metabolism
8.
Brain Res ; 1241: 56-61, 2008 Nov 19.
Article in English | MEDLINE | ID: mdl-18817760

ABSTRACT

The thalamic paraventricular nucleus (PVT) receives afferents from numerous brain areas, including the hypothalamic suprachiasmatic nucleus (SCN), considered to be the major circadian pacemaker. The PVT also sends projections to the SCN, limbic system centers and some nuclei involved in the control of the Sleep-Wake cycle. In this study, we report the identification of a hitherto not reported direct retinal projection to the PVT of the rock cavy, a typical rodent species of the northeast region of Brazil. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-immunoreactive fibers and presumptive terminals were seen in the PVT. Some possible functional correlates of the present data are briefly discussed, including the role of the PVT in the modulation of the circadian rhythms by considering the reciprocal connections between the PVT and the SCN. The present work is the first to show a direct retinal projection to the PVT of a rodent and may contribute to elucidate the anatomical substrate of the functionally demonstrated involvement of this midline thalamic nucleus in the modulation of the circadian timing system.


Subject(s)
Axons/ultrastructure , Circadian Rhythm/physiology , Midline Thalamic Nuclei/cytology , Retinal Ganglion Cells/cytology , Rodentia/anatomy & histology , Visual Pathways/cytology , Animals , Axons/physiology , Brain Mapping , Cholera Toxin , Immunohistochemistry , Midline Thalamic Nuclei/physiology , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Retina/cytology , Retina/physiology , Retinal Ganglion Cells/physiology , Rodentia/physiology , Species Specificity , Staining and Labeling , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...