Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Article in English | MEDLINE | ID: mdl-38775551

ABSTRACT

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Subject(s)
Glycoconjugates , Leishmania , Metabolome , Peptide Hydrolases , Leishmania/enzymology , Peptide Hydrolases/metabolism , Animals , Glycosphingolipids/metabolism , Complement System Proteins
2.
Biomed Pharmacother ; 172: 116254, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340398

ABSTRACT

Leishmaniases, a group of diseases caused by the species of the protozoan parasite Leishmania, remains a significant public health concern worldwide. Host immune responses play a crucial role in the outcome of Leishmania infections, and several mediators that regulate inflammatory responses are potential targets for therapeutic approaches. Annexin A1 (AnxA1), an endogenous protein endowed with anti-inflammatory and pro-resolving properties, has emerged as a potential player. We have shown that during L. braziliensis infection, deficiency of AnxA1 exacerbates inflammatory responses but does not affect parasite burden. Here, we have investigated the role of AnxA1 in L. amazonensis infection, given the non-healing and progressive lesions characteristic of this infectious model. Infection of AnxA1 KO BALB/c mice resulted in increased lesion size and tissue damage associated with higher parasite burdens and enhanced inflammatory response. Notably, therapeutic application of the AnxA1 peptidomimetic Ac2-26 improves control of parasite replication and increases IL-10 production in vivo and in vitro, in both WT and AnxA1 KO mice. Conversely, administration of WRW4, an inhibitor of FPR2/3, resulted in larger lesions and decreased production of IL-10, suggesting that the effects of AnxA1 during L. amazonensis infection are associated with the engagement of these receptors. Our study illuminates the role of AnxA1 in L. amazonensis infection, demonstrating its impact on the susceptibility phenotype of BALB/c mice. Furthermore, our results indicate that targeting the AnxA1 pathway by using the Ac2-26 peptide could represent a promising alternative for new treatments for leishmaniasis.


Subject(s)
Annexin A1 , Leishmania , Leishmaniasis , Peptides , Animals , Mice , Annexin A1/administration & dosage , Annexin A1/metabolism , Immunity , Interleukin-10/metabolism , Leishmaniasis/drug therapy , Mice, Inbred BALB C , Peptides/administration & dosage
3.
Mem Inst Oswaldo Cruz ; 114: e180405, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30726344

ABSTRACT

BACKGROUND: Visceral Leishmaniasis (VL) is an infectious disease that is a significant cause of death among infants aged under 1 year and the elderly in Brazil. Serodiagnosis is a mainstay of VL elimination programs; however, it has significant limitations due to low accuracy. OBJECTIVE: This study aimed to evaluate three recombinant Leishmania infantum proteins (rFc, rC9, and rA2) selected from previous proteomics and genomics analyses to develop enzyme-linked immunosorbent assay (ELISA) and immunochromatographic tests (ICT) for the serodiagnosis of human VL (HVL) and canine VL (CVL). METHODS: A total of 186 human (70 L. infantum-infected symptomatic, 20 other disease-infected, and 96 healthy) and 185 canine (82 L. infantum-infected symptomatic, 27 L. infantum-infected asymptomatic, and 76 healthy) sera samples were used for antibody detection. FINDINGS: Of the three proteins, rA2 (91.5% sensitivity and 87% specificity) and rC9 (95.7% sensitivity and 87.5% specificity) displayed the best performance in ELISA-HVL and ELISA-CVL, respectively. ICT-rA2 also displayed the best performance for HVL diagnosis (92.3% sensitivity and 88.0% specificity) and had high concordance with immunofluorescence antibody tests (IFAT), ELISA-rK39, IT-LEISH®, and ELISAEXT. ICT-rFc, ICT-rC9, and ICT-rA2 had sensitivities of 88.6%, 86.5%, and 87.0%, respectively, with specificity values of 84.0%, 92.0%, and 100%, respectively for CVL diagnosis. MAIN CONCLUSIONS: The three antigens selected by us are promising candidates for VL diagnosis regardless of the test format, although the antigen combinations and test parameters may warrant further optimisation.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/blood , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Protozoan Proteins/blood , Animals , Antigens, Protozoan/immunology , Case-Control Studies , Chromatography, Affinity , Dogs , Enzyme-Linked Immunosorbent Assay , Humans , Leishmaniasis, Visceral/veterinary , Protozoan Proteins/immunology , Recombinant Proteins/blood , Recombinant Proteins/immunology , Sensitivity and Specificity
4.
Mem. Inst. Oswaldo Cruz ; 114: e180405, 2019. tab, graf
Article in English | LILACS | ID: biblio-984760

ABSTRACT

BACKGROUND Visceral Leishmaniasis (VL) is an infectious disease that is a significant cause of death among infants aged under 1 year and the elderly in Brazil. Serodiagnosis is a mainstay of VL elimination programs; however, it has significant limitations due to low accuracy. OBJECTIVE This study aimed to evaluate three recombinant Leishmania infantum proteins (rFc, rC9, and rA2) selected from previous proteomics and genomics analyses to develop enzyme-linked immunosorbent assay (ELISA) and immunochromatographic tests (ICT) for the serodiagnosis of human VL (HVL) and canine VL (CVL). METHODS A total of 186 human (70 L. infantum-infected symptomatic, 20 other disease-infected, and 96 healthy) and 185 canine (82 L. infantum-infected symptomatic, 27 L. infantum-infected asymptomatic, and 76 healthy) sera samples were used for antibody detection. FINDINGS Of the three proteins, rA2 (91.5% sensitivity and 87% specificity) and rC9 (95.7% sensitivity and 87.5% specificity) displayed the best performance in ELISA-HVL and ELISA-CVL, respectively. ICT-rA2 also displayed the best performance for HVL diagnosis (92.3% sensitivity and 88.0% specificity) and had high concordance with immunofluorescence antibody tests (IFAT), ELISA-rK39, IT-LEISH®, and ELISAEXT. ICT-rFc, ICT-rC9, and ICT-rA2 had sensitivities of 88.6%, 86.5%, and 87.0%, respectively, with specificity values of 84.0%, 92.0%, and 100%, respectively for CVL diagnosis. MAIN CONCLUSIONS The three antigens selected by us are promising candidates for VL diagnosis regardless of the test format, although the antigen combinations and test parameters may warrant further optimisation.


Subject(s)
Animals , Dogs , Enzyme-Linked Immunosorbent Assay , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Chromatography, Affinity
SELECTION OF CITATIONS
SEARCH DETAIL
...