Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
An Acad Bras Cienc ; 91(2): e20180991, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31241705

ABSTRACT

Dalbergieae tribe lectins, possessing binding affinity for galactose and mannose, present inflammatory and nociceptive effects, while those for N-acetylglucosamine are anti-inflammatory. Since the anti-inflammatory effect of the seed lectin of L. araripensis (LAL) had been already demonstrated in mice, this effect was presently evaluated in rat models of acute inflammation. LAL (0.01-1 mg/kg) was administered by intravenous (i.v.) route in male Wistar rats 30 min before paw edema induction by dextran or carrageenan, and peritonitis by carrageenan. LAL (1 mg/kg) was incubated with N-acetylglucosamine for allowing lectin-sugar interactions before injection into animals. LAL toxicity was evaluated by the parameters: body mass, organs weight, stomach macroscopy, hematological and biochemical dosage. Statistical analysis was performed by ANOVA and Bonferroni's test (p<0.05). The paw edema induced by carrageenan (AUC: 0.96 ± 0.09) was inhibited by LAL about 39% (0-2 h) at all doses, and about 72% (3-5 h) at 0.1 and 1 mg/kg. The increase in the neutrophil migration stimulated by carrageenan was also inhibited by LAL (83%). In both models, LAL inhibitory effect was prevented by GlcNAc. The sub-chronic treatment with LAL was well tolerated by animals. LAL possesses anti-inflammatory effect via lectin domain, indicating potential modulator role in cellular inflammatory events.


Subject(s)
Edema/drug therapy , Fabaceae/chemistry , Inflammation/drug therapy , Lectins/pharmacology , Acute Disease , Animals , Carrageenan , Disease Models, Animal , Fabaceae/classification , Lectins/isolation & purification , Male , Rats , Rats, Wistar
2.
An Acad Bras Cienc ; 89(3 Suppl): 2113-2117, 2017.
Article in English | MEDLINE | ID: mdl-28876382

ABSTRACT

Freshwater algae are rich sources of structurally biologically active metabolites, such as fatty acids, steroids, carotenoids and polysaccharides. Among these metabolites, lectins stand out. Lectins are proteins or glycoproteins of non-immune origin which bind to carbohydrates or glycoconjugates, without changing ligand structure. Many studies have reported on the use of Spirogyra spp. as effective bioindicators of heavy metals; however, reports on Spirogyra molecular bioprospecting are quite limited. Therefore, this study aimed to detect, isolate, purify and characterize a lectin present in the freshwater green algae Spirogyra. Presence of the lectin protein in the extract was detected by hemagglutination assays. Subsequently, the protein extract was subjected to a sugar inhibition assay to identify the lectin-specific carbohydrate. Following this, the extract was applied to a guar gum column to afford the pure lectin. The lectin was inhibited by N-acetyl-glucosamine and N-acetyl-beta-D-mannose, but more strongly by D-galactose. The apparent molecular mass of the purified lectin was evaluated by Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Electrophoretic analysis revealed a single protein band with an apparent molecular mass of 56 kDa. Thus, it could be concluded that a lectin was purified from Spirogyra spp.


Subject(s)
Plant Lectins/isolation & purification , Spirogyra/chemistry , Carbohydrates/classification , Carbohydrates/isolation & purification , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Fresh Water , Hemagglutination Tests , Plant Lectins/chemistry
3.
An. acad. bras. ciênc ; 89(3,supl): 2113-2117, 2017. tab, graf
Article in English | LILACS | ID: biblio-886782

ABSTRACT

ABSTRACT Freshwater algae are rich sources of structurally biologically active metabolites, such as fatty acids, steroids, carotenoids and polysaccharides. Among these metabolites, lectins stand out. Lectins are proteins or glycoproteins of non-immune origin which bind to carbohydrates or glycoconjugates, without changing ligand structure. Many studies have reported on the use of Spirogyra spp. as effective bioindicators of heavy metals; however, reports on Spirogyra molecular bioprospecting are quite limited. Therefore, this study aimed to detect, isolate, purify and characterize a lectin present in the freshwater green algae Spirogyra. Presence of the lectin protein in the extract was detected by hemagglutination assays. Subsequently, the protein extract was subjected to a sugar inhibition assay to identify the lectin-specific carbohydrate. Following this, the extract was applied to a guar gum column to afford the pure lectin. The lectin was inhibited by N-acetyl-glucosamine and N-acetyl-beta-D-mannose, but more strongly by D-galactose. The apparent molecular mass of the purified lectin was evaluated by Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Electrophoretic analysis revealed a single protein band with an apparent molecular mass of 56 kDa. Thus, it could be concluded that a lectin was purified from Spirogyra spp.


Subject(s)
Plant Lectins/isolation & purification , Spirogyra/chemistry , Hemagglutination Tests , Carbohydrates/isolation & purification , Carbohydrates/classification , Chromatography, Affinity , Plant Lectins/chemistry , Electrophoresis, Polyacrylamide Gel , Fresh Water
4.
An Acad Bras Cienc ; 86(1): 251-63, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676166

ABSTRACT

Natural antioxidants found in marine macroalgae are bioactive compounds known to play an important role in the prevention of diseases associated with aging cells protecting them against the oxidative damage. The purpose of this study was to evaluate the antioxidant and cytotoxic activity of ethanolic extracts of two species of red seaweeds, Amansia multifida and Meristiella echinocarpa. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power (FRAP) assay, ferrous ion chelating (FIC) assay, ß-carotene bleaching (BCB) assay and total phenolic content (TPC) quantification. Cytotoxicity was evaluated with the brine shrimp Artemia sp. lethality test. The TPC values observed in the present study indicated that both species A. multifida and M. echinocarpa are rich in phenolic compounds, reaching values of 45.40 and 28.46 mg gallic acid equivalent (GAE) g-1 of ethanolic extract, respectively. DPPH radical scavenging and ferrous ion chelating showed values of 60% and 17%, respectively. Both seaweed extracts inhibited ß-carotene oxidation by approximately 40%. None of the algal extracts were potentially cytotoxic. The results have showed that extracts of both species of marine red algae exhibit antioxidant potential and low toxicity. They are sources of natural antioxidant compounds.


Subject(s)
Antioxidants/pharmacology , Seaweed/chemistry , Animals , Antioxidants/toxicity , Artemia/drug effects , Biological Assay , Brazil , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...