Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(8): 568, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35794258

ABSTRACT

In this study, the multi-marker approach was used for the first time with a highly urbanized lake located in the city of Fortaleza, Brazil, to provide a comprehensive view of temporal trends in sources of pollutants and evaluate the relation between the influence of anthropogenic activities and socioeconomic development. Total concentrations of the markers analyzed ranged from 21.0 to 103.8 ng g-1, 450.2 to 2390.2 ng g-1, and 233.8 to 9827.3 ng g-1 for ∑PAHs, ∑n-alk, and ∑sterols, respectively. Concentrations and patterns of PAH, AH, and sterol ratio distribution changed over time and may be associated with different episodes in the history of the city of Fortaleza. The marker ratio distribution in the sediment core revealed an overlap of natural and anthropogenic sources, with degraded oil, biogenic inputs, pyrogenic processes, and fecal contamination from humans and animals in the past changing to petroleum fossil inputs and high contamination from sewage in the present day. The distribution of markers and the chronological history of Fortaleza revealed two distinct periods related to human activities during the development of the city. In the first period (prior to the 1950s), the main human activities were animal breeding and the use of biomass for domestic activities, public and cargo transportation, and commercial activities, especially food production. In the second period (after the 1950s), expansion of the city occurred due to the so-called Brazilian economic miracle and the main human activities were industrialization and urbanization processes, involving deforestation, paving, sewage discharge, and petroleum combustion.


Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Anthropogenic Effects , Brazil , Environmental Monitoring , Geologic Sediments , Sewage , Water Pollutants, Chemical/analysis
2.
Arch Environ Contam Toxicol ; 68(1): 132-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398222

ABSTRACT

This study focuses on the discussion of different lines of evidence (LoEs) applied to a sediment-quality assessment that considered the following: chemical concentrations of metals; polycyclic aromatic hydrocarbons (PAHs) in estuarine waters, sediments, and oysters (native and caged Crassostrea brasiliana); PAHs in semipermeable membrane devices (SPMDs); simultaneously extracted metals-acid volatile sulfides (SEM-AVS); benthic community assessment (the exploratory benthic index and the relative benthic index); chronic toxicity tests with the sea urchin Lytechinus variegatus; and bioaccumulation models. Significantly contaminated sediments from the Santos Estuarine System and the consequent toxicity of tested organisms were measured. Caged oysters presented bioaccumulation rates ≤2,500% of total PAH content and 200% of metal content when compared with control organisms from an uncontaminated area. SPMD results presented the same bioaccumulation pattern as caged oysters but at lower concentrations. Benthic communities presented some alterations, and there was a predominance of tolerant species in the inner part of the estuary. According to the SEM-AVS approach, metals should be assumed to be nonbioavailable, but experiments with transplanted C. brasiliana showed metal bioaccumulation, particularly in the cases of chromium, copper, mercury, and zinc. The weight-of-evidence approach was applied to compare and harmonize LoEs commonly used in sediment-quality assessments and to then classify estuary environments according to both their potential for having adverse effects on the biota and their possible ecological risks. All of the results of these approaches (except for SEM-AVS) were found to complement each other.


Subject(s)
Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/analysis , Animals , Brazil , Geologic Sediments/chemistry , Metals/analysis , Metals/metabolism , Ostreidae/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Rivers/chemistry , Water Pollutants, Chemical/metabolism
3.
Environ Monit Assess ; 186(2): 815-34, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24078050

ABSTRACT

Although the Ibirité reservoir (an urban tropical eutrophic reservoir) has been the recipient of the discharge of a large volume of raw urban sewage, the key cause of ecosystem degradation has been historically solely attributed to the discharge of effluents from an oil refinery. This fact motivated an investigation to unravel the compositions of contaminants in the sediments to evaluate their distributions, possible sources, and potential impacts on sediment­water quality. The concentrations of polycyclic aromatic and aliphatic hydrocarbons and of metals and metalloids were, in general, significantly lower than some selected polluted sites used for comparison. Calculated distribution indexes showed that the hydrocarbon sources were petrogenic, pyrogenic, and biogenic. Only a few PAHs exceeded the threshold effects level (TEL) guideline. Industrial activities are the presumed sources of metals and metalloids except for copper, which is from copper sulfate used as algaecide in the reservoir. The bioavailable concentrations of some metal and metalloid exceeded the TEL­PEL guidelines. The acid volatile sulfide concentration was greater than that of the simultaneously extracted metals in the clayey­silty reservoir sediments, whereas the opposite result was observed for the sandy sediments of the tributaries. The sediment interstitial water toxic units were >1 for metals, thus indicating that metals are potentially toxic to the benthos. Considering the data set generated in this study, it can be concluded that the degradation of Ibirité reservoir and its tributaries cannot be solely attributed to the input of hydrocarbons, but predominantly to the discharge of raw urban sewage and effluents from other industrial sources.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Cities , Eutrophication , Metals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...