Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118900, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32920444

ABSTRACT

To demonstrate the potential of Raman spectroscopy for the qualitative and quantitative analysis of solid dosage pharmacological formulations, different concentrations of Sitagliptin, an Active Pharmaceutical Ingredient (API) currently prescribed as an anti-diabetic drug, are characterised. Increase of the API concentrations induces changes in the Raman spectral features specifically associated with the drug and excipients. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), were used for the qualitative and quantitative analysis of the spectral responses. A PLSR model is constructed which enables the prediction of different concentrations of drug in the complex excipient matrices. During the development of the prediction model, the Root Mean Square Error of Cross Validation (RMSECV) was found to be 0.36 mg and the variability explained by the model, according to the (R2) value, was found to be 0.99. Moreover, the concentration of the API in the unknown sample was determined. This concentration was predicted to be 64.28/180 mg (w/w), compared to the 65/180 mg (w/w). These findings demonstrate Raman spectroscopy coupled to PLSR analysis to be a reliable tool to verify Sitagliptin contents in the pharmaceutical samples based on calibration models prepared under laboratory conditions.


Subject(s)
Sitagliptin Phosphate , Spectrum Analysis, Raman , Calibration , Drug Compounding , Excipients , Least-Squares Analysis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 232: 118162, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32106031

ABSTRACT

In this study, Raman spectroscopy has been employed for the characterization of two structurally different monodentate N-heterocyclic carbene ligands (ligand-1 and ligand-2) and their respective complexes (complex-1 and complex-2). The Raman spectral features are found helpful for the confirmation of formation of complexes. The significant Raman spectral features are identified for benzimidazole ring with higher intensities in carbene complexes having more polarizability as compared to their ligands, providing the evidence for the formation of coordinate covalent bond. The successful complexation is further supported by using multivariate data analysis technique, Principal Component Analysis (PCA), which is found very helpful to highlight the variability of Raman spectral data of both ligands and their respective metal complexes from each other. Moreover, the coordination of carbene with Ag(I) is confirmed from the dominant spectral markers of higher intensities at 359 cm-1 in complex-1 and 338 cm-1 in complex-2. The effective and reliable characterization and confirmation of metal complexes indicates the potential of Raman spectroscopy for its use for the characterization of the organometallic complexes and other chemical products.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117851, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31786050

ABSTRACT

In this study Raman spectroscopy is employed for the characterization of two different ligands called as S1 and S2 and their respective co-ordinate complexes called C1 and C2. Specific Raman spectral signatures are observed for each of these Silver(I)-N-heterocyclic carbene complexes Ag(I)-(NHCs), which can be associated with the imidazolium ring, part of both of the ligands, indicating the formation of new coordinate covalent bond. For the detailed analysis, Raman spectral data of these ligands and complexes is analyzed by multivariate data analysis technique, Principal Component Analysis (PCA) which is found very helpful to differentiate two ligands and complexes from each other. The significant Raman peaks with higher intensities in the complexes as compared to the respective ligands are associated with imidazole ring which can be attributed to the enhanced polarizability of this ring on complex formation. Moreover, the spectral features associated with (AgC) bond are observed with higher intensity at 360 in (C1) and 383 in (C2). This study indicates the potential of Raman spectroscopy for the characterization and confirmation of formation of organometallic complexes and other chemical products.

SELECTION OF CITATIONS
SEARCH DETAIL
...