Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 228: 65-79, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768931

ABSTRACT

This study proposed an intelligent model for predicting abiotic stress-responsive microRNAs in plants. MicroRNAs (miRNAs) are short RNA molecules regulates the stress in genes. Experimental methods are costly and time-consuming, as compare to in-silico prediction. Addressing this gap, the study seeks to develop an efficient computational model for plant stress response prediction. The two benchmark datasets for MiRNA and Pre-MiRNA dataset have been acquired in this study. Four ensemble approaches such as bagging, boosting, stacking, and blending have been employed. Classifiers such as Random Forest (RF), Extra Trees (ET), Ada Boost (ADB), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM). Stacking and Blending employed all stated classifiers as base learners and Logistic Regression (LR) as Meta Classifier. There have been a total of four types of testing used, including independent set, self-consistency, cross-validation with 5 and 10 folds, and jackknife. This study has utilized evaluation metrics such as accuracy score, specificity, sensitivity, Mathew's correlation coefficient (MCC), and AUC. Our proposed methodology has outperformed existing state of the art study in both datasets based on independent set testing. The SVM-based approach has exhibited accuracy score of 0.659 for the MiRNA dataset, which is better than the previous study. The ET classifier has surpassed the accuracy of Pre-MiRNA dataset as compared to the existing benchmark study, achieving an impressive score of 0.67. The proposed method can be used in future research to predict abiotic stresses in plants.


Subject(s)
MicroRNAs , Stress, Physiological , Support Vector Machine , MicroRNAs/genetics , Stress, Physiological/genetics , RNA, Plant/genetics , Computational Biology/methods , Plants/genetics , Algorithms , Gene Expression Regulation, Plant/genetics
2.
J Cheminform ; 15(1): 110, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980534

ABSTRACT

BBPs have the potential to facilitate the delivery of drugs to the brain, opening up new avenues for the development of treatments targeting diseases of the central nervous system (CNS). The obstacle faced in central nervous system disorders stems from the formidable task of traversing the blood-brain barrier (BBB) for pharmaceutical agents. Nearly 98% of small molecule-based drugs and nearly 100% of large molecule-based drugs encounter difficulties in successfully penetrating the BBB. This importance leads to identification of these peptides, can help in healthcare systems. In this study, we proposed an improved intelligent computational model BBB-PEP-Prediction for identification of BBB peptides. Position and statistical moments based features have been computed for acquired benchmark dataset. Four types of ensembles such as bagging, boosting, stacking and blending have been utilized in the methodology section. Bagging employed Random Forest (RF) and Extra Trees (ET), Boosting utilizes XGBoost (XGB) and Light Gradient Boosting Machine (LGBM). Stacking uses ET and XGB as base learners, blending exploited LGBM and RF as base learners, while Logistic Regression (LR) has been applied as Meta learner for stacking and blending. Three classifiers such as LGBM, XGB and ET have been optimized by using Randomized search CV. Four types of testing such as self-consistency, independent set, cross-validation with 5 and 10 folds and jackknife test have been employed. Evaluation metrics such as Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), Mathew's correlation coefficient (MCC) have been utilized. The stacking of classifiers has shown best results in almost each testing. The stacking results for independent set testing exhibits accuracy, specificity, sensitivity and MCC score of 0.824, 0.911, 0.831 and 0.663 respectively. The proposed model BBB-PEP-Prediction shown superlative performance as compared to previous benchmark studies. The proposed system helps in future research and research community for in-silico identification of BBB peptides.

3.
PeerJ Comput Sci ; 9: e1353, 2023.
Article in English | MEDLINE | ID: mdl-37346628

ABSTRACT

With the rise of social media, the dissemination of forged content and news has been on the rise. Consequently, fake news detection has emerged as an important research problem. Several approaches have been presented to discriminate fake news from real news, however, such approaches lack robustness for multi-domain datasets, especially within the context of Urdu news. In addition, some studies use machine-translated datasets using English to Urdu Google translator and manual verification is not carried out. This limits the wide use of such approaches for real-world applications. This study investigates these issues and proposes fake news classier for Urdu news. The dataset has been collected covering nine different domains and constitutes 4097 news. Experiments are performed using the term frequency-inverse document frequency (TF-IDF) and a bag of words (BoW) with the combination of n-grams. The major contribution of this study is the use of feature stacking, where feature vectors of preprocessed text and verbs extracted from the preprocessed text are combined. Support vector machine, k-nearest neighbor, and ensemble models like random forest (RF) and extra tree (ET) were used for bagging while stacking was applied with ET and RF as base learners with logistic regression as the meta learner. To check the robustness of models, fivefold and independent set testing were employed. Experimental results indicate that stacking achieves 93.39%, 88.96%, 96.33%, 86.2%, and 93.17% scores for accuracy, specificity, sensitivity, MCC, ROC, and F1 score, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...